ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnons Parametric Pumping in Bulk Acoustic Waves Resonator

89   0   0.0 ( 0 )
 نشر من قبل Sergey Dizhur
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the experimental observation of excitation and detection of parametric spin waves and spin currents in the bulk acoustic wave resonator. The hybrid resonator consists of ZnO piezoelectric film, yttrium iron garnet (YIG) films on gallium gadolinium garnet substrate, and a heavy metal Pt layer. Shear bulk acoustic waves are electrically excited in the ZnO layer due to piezoeffect at the resonant frequencies of the resonator. The magnetoelastic interaction in the YIG film emerges magnons (spin waves) excitation by acoustic waves either on resonators eigenfrequencies or the half-value frequencies at supercritical power. We investigate acoustic pumping of magnons at the half-value frequencies and acoustic spin pumping from parametric magnons, using the inverse spin Hall effect in the Pt layer. The constant electric voltage in the Pt layer, depending on the frequency, the magnetic field, and the pump power, was systematically studied. We explain the low threshold obtained (~0.4 mW) by the high efficiency of electric power transmission into the acoustic wave in the resonator.

قيم البحث

اقرأ أيضاً

We experimentally show that exchange magnons can be detected using a combination of spin pumping and inverse spin-Hall effect (iSHE) proving its wavelength integrating capability down to the sub-micrometer scale. The magnons were injected in a ferrim agnetic yttrium iron garnet film by parametric pumping and the iSHE-induced voltage was detected in an attached Pt layer. The role of the density, wavelength, and spatial localization of the magnons for the spin pumping efficiency is revealed. This study opens the field of the magnon-based information processing to magnons with nano-scale wavelengths.
Voltage induced magnetization dynamics of magnetic thin films is a valuable tool to study anisotropic fields, exchange couplings, magnetization damping and spin pumping mechanism. A particularly well established technique is the ferromagnetic resonan ce (FMR) generated by the coupling of microwave photons and magnetization eigenmodes in the GHz range. Here we review the basic concepts of the so-called acoustic ferromagnetic resonance technique (a-FMR) induced by the coupling of surface acoustic waves (SAW) and magnetization of thin films. Interestingly, additional to the benefits of the microwave excited FMR technique, the coupling between SAW and magnetization also offers fertile ground to study magnon-phonon and spin rotation couplings. We describe the in-plane magnetic field angle dependence of the a-FMR by measuring the absorption / transmission of SAW and the attenuation of SAW in the presence of rotational motion of the lattice, and show the consequent generation of spin current by acoustic spin pumping.
A Thouless pump can be regarded as a dynamical version of the integer quantum Hall effect. In a finite-size configuration, such topological pump displays edge modes that emerge dynamically from one bulk-band and dive into the opposite bulk-band, an e ffect that can be reproduced with both quantum and classical systems. Here, we report the first un-assisted dynamic energy transfer across a metamaterial, via pumping of such topological edge modes. The system is a topological aperiodic acoustic crystal, with a phason that can be fast and periodically driven in adiabatic cycles. When one edge of the metamaterial is excited in a topological forbidden range of frequencies, a microphone placed at the other edge starts to pick up a signal as soon as the pumping process is set in motion. In contrast, the microphone picks no signal when the forbidden range of frequencies is non-topological.
We investigate the modulation of optical phonons in semiconductor crystal by surface acoustic wave (SAW) propagating on the crystal surface. The SAW fields induce changes on the order of 10textsuperscript{-3} in the average Raman scattering intensity by optical phonons in Si and GaN crystals. The SAW-induced modifications in the Raman cross-section are dominated by the modulation of the optical phonon energy by the SAW strain field. In addition to this local contribution, the experiments give evidence for a weaker and non-local contribution arising from the spatial variation of the SAW strain field. The latter is attributed to the activation of optical modes with large wave vectors and, therefore, lower energies. The experimental results, which are well described by theoretical models for the two contributions, prove that optical phonons can be manipulated by SAWs with $mu$m wavelengths
The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport pro perties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2,3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Although the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا