ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational Quantum Simulation for Periodic Materials

91   0   0.0 ( 0 )
 نشر من قبل Nobuyuki Yoshioka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantum-classical hybrid algorithm that simulates electronic structures of periodic systems such as ground states and quasiparticle band structures. By extending the unitary coupled cluster (UCC) theory to describe crystals in arbitrary dimensions, we numerically demonstrate in hydrogen chain that the UCC ansatz implemented on a quantum circuit can be successfully optimized with a small deviation from the exact diagonalization over the entire range of the potential energy curves. Furthermore, with the aid of the quantum subspace expansion method, in which we truncate the Hilbert space within the linear response regime from the ground state, the quasiparticle band structure is computed as charged excited states. Our work establishes a powerful interface between the rapidly developing quantum technology and modern material science.

قيم البحث

اقرأ أيضاً

The variational quantum eigensolver (VQE) is a promising algorithm to compute eigenstates and eigenenergies of a given quantum system that can be performed on a near-term quantum computer. Obtaining eigenstates and eigenenergies in a specific symmetr y sector of the system is often necessary for practical applications of the VQE in various fields ranging from high energy physics to quantum chemistry. It is common to add a penalty term in the cost function of the VQE to calculate such a symmetry-resolving energy spectrum, but systematic analysis on the effect of the penalty term has been lacking, and the use of the penalty term in the VQE has not been justified rigorously. In this work, we investigate two major types of penalty terms for the VQE that were proposed in the previous studies. We show a penalty term in one of the two types works properly in that eigenstates obtained by the VQE with the penalty term reside in the desired symmetry sector. We further give a convenient formula to determine the magnitude of the penalty term, which may lead to the faster convergence of the VQE. Meanwhile, we prove that the other type of penalty terms does not work for obtaining the target state with the desired symmetry in a rigorous sense and even gives completely wrong results in some cases. We finally provide numerical simulations to validate our analysis. Our results apply to general quantum systems and lay the theoretical foundation for the use of the VQE with the penalty terms to obtain the symmetry-resolving energy spectrum of the system, which fuels the application of a near-term quantum computer.
Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree $d$ to a qubit simulator Hamiltonian composed of Pauli operators of weight $O(d)$. A system of $m$ fermi modes gets mapped to $n=O(md)$ qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree $dge 6$. In contrast, we prove that the original Superfast Encoding lacks the error correction property for $dle 6$. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from $O(d)$ to $O(log{d})$. The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.
Recent practical approaches for the use of current generation noisy quantum devices in the simulation of quantum many-body problems have been dominated by the use of a variational quantum eigensolver (VQE). These coupled quantum-classical algorithms leverage the ability to perform many repeated measurements to avoid the currently prohibitive gate depths often required for exact quantum algorithms, with the restriction of a parameterized circuit to describe the states of interest. In this work, we show how the calculation of zero-temperature dynamic correlation functions defining the linear response characteristics of quantum systems can also be recast into a modified VQE algorithm, which can be incorporated into the current variational quantum infrastructure. This allows for these important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis, and they approach exactness over all frequencies as the flexibility of the parameterization increases. The frequency resolution hence does not explicitly scale with gate depth, which is approximately twice as deep as a ground state VQE. We apply the method to compute the single-particle Greens function of ab initio dihydrogen and lithium hydride molecules, and demonstrate the use of a practical active space embedding approach to extend to larger systems. While currently limited by the fidelity of two-qubit gates, whose number is increased compared to the ground state algorithm on current devices, we believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.
102 - Xiao Yuan , Suguru Endo , Qi Zhao 2018
The variational method is a versatile tool for classical simulation of a variety of quantum systems. Great efforts have recently been devoted to its extension to quantum computing for efficiently solving static many-body problems and simulating real and imaginary time dynamics. In this work, we first review the conventional variational principles, including the Rayleigh-Ritz method for solving static problems, and the Dirac and Frenkel variational principle, the McLachlans variational principle, and the time-dependent variational principle, for simulating real time dynamics. We focus on the simulation of dynamics and discuss the connections of the three variational principles. Previous works mainly focus on the unitary evolution of pure states. In this work, we introduce variational quantum simulation of mixed states under general stochastic evolution. We show how the results can be reduced to the pure state case with a correction term that takes accounts of global phase alignment. For variational simulation of imaginary time evolution, we also extend it to the mixed state scenario and discuss variational Gibbs state preparation. We further elaborate on the design of ansatz that is compatible with post-selection measurement and the implementation of the generalised variational algorithms with quantum circuits. Our work completes the theory of variational quantum simulation of general real and imaginary time evolution and it is applicable to near-term quantum hardware.
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-size quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulati ons of some non-trivial Hamiltonians. However, short quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum ansatz can be further enhanced by classical post-processing with neural networks. We show that VQNHE consistently and significantly outperforms VQE in simulating ground-state energies of quantum spins and molecules given the same amount of quantum resources. More importantly, we demonstrate that for arbitrary post-processing neural functions, VQNHE only incurs an polynomial overhead of processing time and represents the first scalable method to exponentially accelerate VQE with non-unitary post-processing that can be efficiently implemented in the NISQ era.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا