ﻻ يوجد ملخص باللغة العربية
In this paper we present a quantum stochastic model for spectroscopic line-shapes in the presence of a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. It^os Lemma then allows us to easily construct and evaluate correlation functions and response functions. Focusing on the linear response, we compare our model to the classic Anderson-Kubo model. While similar in motivation, there are profound differences in the predicted lineshapes, notably in terms of asymmetry, and variation with increasing background population.
We develop a stochastic theory that treats time-dependent exciton-exciton s-wave scattering and that accounts for dynamic Coulomb screening, which we describe within a mean-field limit. With this theory, we model excitation-induced dephasing effects
Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that
We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to depha
We have studied the effect of a random superconducting order parameter on the localization of quasi-particles, by numerical finite size scaling of the Bogoliubov-de Gennes tight-binding Hamiltonian. Anderson localization is obtained in d=2 and a mobi
A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broade