ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-collapse Properties of Superluminous Supernovae and Long Gamma-Ray Burst Progenitor Models

160   0   0.0 ( 0 )
 نشر من قبل David Aguilera-Dena
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the properties of 42 rapidly rotating, low metallicity, quasi-chemically homogeneously evolving stellar models in the mass range between 4 and 45 $,mathrm{M}_odot$ at the time of core collapse. Such models were proposed as progenitors for both superluminous supernovae (SLSNe) and long duration gamma-ray bursts (lGRBs), and the Type Ic-BL supernovae (SNe) that are associated with them. Our findings suggest that whether these models produce a magnetar driven SLSN explosion or a near-critically rotating black hole (BH) is not a monotonic function of the initial mass. Rather, their explodability varies non-monotonically depending on the late core evolution, once chemical homogeneity is broken. Using different explodability criteria we find that our models have a clear preference to produce SLSNe at lower masses, and lGRBs at higher masses; but find several exceptions, expecting lGRBs to form from stars as low as 10 $,mathrm{M}_odot$, and SLSNe with progenitors as massive as 30 $,mathrm{M}_odot$. In general, our models reproduce the predicted angular momenta, ejecta masses and magnetic field strengths at core collapse inferred for SLSNe and lGRBs, and suggest significant interaction with their circumstellar medium, particularly for explosions with low ejecta mass.

قيم البحث

اقرأ أيضاً

Multidimensional hydrodynamic simulations of shell convection in massive stars suggest the development of aspherical perturbations that may be amplified during iron core-collapse. These perturbations have a crucial and qualitative impact on the delay ed neutrino-driven core-collapse supernova explosion mechanism by increasing the total stress behind the stalled shock. In this paper, we investigate the properties of a 15 msun model evolved in 1-,2-, and 3-dimensions (3D) for the final $sim$424 seconds before gravitational instability and iron core-collapse using MESA and the FLASH simulation framework. We find that just before collapse, our initially perturbed fully 3D model reaches angle-averaged convective velocity magnitudes of $approx$ 240-260 km s$^{-1}$ in the Si- and O-shell regions with a Mach number $approx$ 0.06. We find the bulk of the power in the O-shell resides at large scales, characterized by spherical harmonic orders ($ell$) of 2-4, while the Si-shell shows broad spectra on smaller scales of $ellapprox30-40$. Both convective regions show an increase in power at $ell=5$ near collapse. We show that the 1D texttt{MESA} model agrees with the convective velocity profile and speeds of the Si-shell when compared to our highest resolution 3D model. However, in the O-shell region, we find that texttt{MESA} predicts speeds approximately emph{four} times slower than all of our 3D models suggest. All eight of the multi-dimensional stellar models considered in this work are publicly available.
We use galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation to study the properties of Long Gamma-Ray Burst (LGRB) host galaxies. We assume that LGRBs originate from the death of massive young stars and analyse how results are affected by different metallicity constraints on the progenitor stars. As expected, the host sample with no metallicity restriction on the progenitor stars provides a perfect tracer of the cosmic star formation history. When LGRBs are required to be generated by low-metallicity stars, they trace a decreasing fraction of the cosmic star formation rate at lower redshift, as a consequence of the global increase in metallicity. We study the properties of host galaxies up to high redshift (~9), finding that they typically have low-metallicity (Z<0.5 Z_sun) and that they are small (M<10^9 M_sun), bluer and younger than the average galaxy population, in agreement with observational data. They are also less clustered than typical L_* galaxies in the Universe, and their descendents are massive, red and reside in groups of galaxies with halo mass between 10^{13} M_sun to 10^{14} M_sun.
The massive evolved Wolf-Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds. These structures are known to encode the parameters of the binary orbit and winds. He re, we report observations of a previously undiscovered Wolf-Rayet system, 2XMM J160050.7-514245, with a spectroscopically determined wind speed of $approx$3400 km s$^{-1}$. In the thermal infrared, the system is adorned with a prominent $approx$12$$ spiral dust plume, revealed by proper motion studies to be expanding at only $approx$570 km s$^{-1}$. As the dust and gas appear coeval, these observations are inconsistent with existing models of the dynamics of such colliding wind systems. We propose that this contradiction can be resolved if the system is capable of launching extremely anisotropic winds. Near-critical stellar rotation is known to drive such winds, suggesting this Wolf-Rayet system as a potential Galactic progenitor system for long-duration gamma-ray bursts.
81 - L. Martinez 2020
The progenitor and explosion properties of type II supernovae (SNe II) are fundamental to understand the evolution of massive stars. Special interest has been given to the range of initial masses of their progenitors, but despite the efforts made, it is still uncertain. Direct imaging of progenitors in pre-explosion images point out an upper initial mass cutoff of $sim$18$M_{odot}$. However, this is in tension with previous studies in which progenitor masses inferred by light curve modelling tend to favour high-mass solutions. Moreover, it has been argued that light curve modelling alone cannot provide a unique solution for the progenitor and explosion properties of SNe II. We develop a robust method which helps us to constrain the physical parameters of SNe II by fitting simultaneously their bolometric light curve and the evolution of the photospheric velocity to hydrodynamical models using statistical inference techniques. Pre-supernova red supergiant models were created using the stellar evolution code MESA, varying the initial progenitor mass. The explosion of these progenitors was then processed through hydrodynamical simulations, where the explosion energy, synthesised nickel mass, and the latters spatial distribution within the ejecta were changed. We compare to observations via Markov chain Monte Carlo methods. We apply this method to a well-studied set of SNe with an observed progenitor in pre-explosion images and compare with results in the literature. Progenitor mass constraints are found to be consistent between our results and those derived by pre-SN imaging and the analysis of late-time spectral modelling. We have developed a robust method to infer progenitor and explosion properties of SN II progenitors which is consistent with other methods in the literature, which suggests that hydrodynamical modelling is able to accurately constrain physical properties of SNe II.
The long gamma ray bursts (GRBs) may arise from the core collapse of massive stars. However, the long GRB rate does not follow the star formation rate (SFR) at high redshifts. In this Letter, we focus on the binary merger model and consider the high spin helium stars after the merger as the progenitor of long GRBs. With this scenario, we estimate the GRB rate by the population synthesis method with the metallicity evolution. Low metallicity binaries are easier to become long GRB progenitors than those for solar metallicity due to the weak wind mass loss and the difference in the stellar evolution. In our results, the long GRB rate roughly agrees with the observed rate, and shows a similar behavior to the observed redshift evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا