ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitons in a box-shaped wavefield with noise: perturbation theory and statistics

57   0   0.0 ( 0 )
 نشر من قبل Andrey Gelash
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the fundamental problem of the nonlinear wavefield scattering data corrections in response to a perturbation of initial condition using inverse scattering transform theory. We present a complete theoretical linear perturbation framework to evaluate first-order corrections of the full set of the scattering data within the integrable one-dimensional focusing nonlinear Schrodinger (NLSE) equation. The general scattering data portrait reveals nonlinear coherent structures - solitons - playing the key role in the wavefield evolution. Applying the developed theory to a classic box-shaped wavefield we solve the derived equations analytically for a single Fourier mode acting as a perturbation to the initial condition, thus, leading to the sensitivity closed-form expressions for basic soliton characteristics, i.e. the amplitude, velocity, phase and its position. With the appropriate statistical averaging we model the soliton noise-induced effects resulting in compact relations for standard deviations of soliton parameters. Relying on a concept of a virtual soliton eigenvalue we derive the probability of a soliton emergence or the opposite due to noise and illustrate these theoretical predictions with direct numerical simulations of the NLSE evolution. The presented framework can be generalised to other integrable systems and wavefield patterns.



قيم البحث

اقرأ أيضاً

We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression (bubbles) can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are sup ported by a double potential barrier. Families of the modes are constructed in a numerical form, and also by means of the Thomas-Fermi and variational approximations. All these modes are stable, which is predicted by computation of eigenvalues for small perturbations and confirmed by direct numerical simulations.
An unstable particle in quantum mechanics can be stabilized by frequent measurements, known as the quantum Zeno effect. A soliton with dissipation behaves like an unstable particle. Similar to the quantum Zeno effect, here we show that the soliton ca n be stabilized by modulating periodically dispersion, nonlinearity, or the external harmonic potential available in BEC. This can be obtained by analyzing a Painleve integrability condition, which results from the rigorous Painleve analysis of the generalized nonautonomous nonlinear Schrodinger equation. The result has a profound implication to the optical soliton transmission and the matter-wave soliton dynamics.
We study the transverse instability and dynamics of bright soliton stripes in two-dimensional nonlocal nonlinear media. Using a multiscale perturbation method, we derive analytically the first-order correction to the soliton shape, which features an exponential growth in time -- a signature of the transverse instability. The solitons characteristic timescale associated with its exponential growth,is found to depend on the square root of the nonlocality parameter. This, in turn, highlights the nonlocality-induced suppression of the transverse instability. Our analytical predictions are corroborated by direct numerical simulations, with the analytical results being in good agreement with the numerical ones.
We investigate the existence and stability of dissipative soliton solution in a system described by complex Ginzburg-Landau (CGL) equation with asymmetric complex potential, which is obtained from original parity reflection - time reversal ($mathcal{ PT}$) symmetric Rosen-Morse potential. In this study, stability of solution is examined by numerical analysis to show that solitons are stable for some parameter ranges for both self-focusing and self-defocusing nonlinear modes. Dynamical properties such as evolution and transverse energy flow for both modes are also analyzed. Obtained results are useful for experimental designs and applications in related fields.
We present a classification for bulges of a complete sample of ~1350 edge-on disk galaxies derived from the RC3 (Third Reference Catalogue of Bright Galaxies, de Vaucouleurs et al. 1991). A visual classification of the bulges using the Digitized Sky Survey (DSS) in three types of b/p bulges or as an elliptical type is presented and supported by CCD images. NIR observations reveal that dust extinction does almost not influence the shape of bulges. There is no substantial difference between the shape of bulges in the optical and in the NIR. Our analysis reveals that 45% of all bulges are box- and peanut-shaped (b/p). The frequency of b/p bulges for all morphological types from S0 to Sd is > 40%. In particular, this is for the first time that such a large frequency of b/p bulges is reported for galaxies as late as Sd. The fraction of the observed b/p bulges is large enough to explain the b/p bulges by bars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا