ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Atmospheric Impact Data to Model Meteoroid Close Encounters

108   0   0.0 ( 0 )
 نشر من قبل Patrick Shober
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on telescopic observations of Jupiter-family comets (JFCs), there is predicted to be a paucity of objects at sub-kilometre sizes. However, several bright fireballs and some meteorites have been tenuously linked to the JFC population, showing metre-scale objects do exist in this region. In 2017, the Desert Fireball Network (DFN) observed a grazing fireball that redirected a meteoroid from an Apollo-type orbit to a JFC-like orbit. Using orbital data collected by the DFN, in this study, we have generated an artificial dataset of close terrestrial encounters that come within $1.5$ lunar distances (LD) of the Earth in the size-range of $0.01-100$kg. This range of objects is typically too small for telescopic surveys to detect, so using atmospheric impact flux data from fireball observations is currently one of the only ways to characterise these close encounters. Based on this model, we predict that within the considered size-range $2.5times 10^{8}$ objects ($0.1%$ of the total flux) from asteroidal orbits ($T_{J}>3$) are annually sent onto JFC-like orbits ($2<T_{J}<3$), with a steady-state population of about $8times 10^{13}$ objects. Close encounters with the Earth provide another way to transfer material to the JFC region. Additionally, using our model, we found that approximately $1.96times 10^{7}$ objects are sent onto Aten-type orbits and $sim10^{4}$ objects are ejected from the Solar System annually via a close encounter with the Earth.

قيم البحث

اقرأ أيضاً

The orbital distributions of dust particles in interplanetary space are inferred from several meteoroid data sets under the constraints imposed by the orbital evolution of the particles due to the planetary gravity and Poynting-Robertson effect. Infr ared observations of the zodiacal cloud by the COBE DIRBE instrument, flux measurements by the dust detectors on board Galileo and Ulysses spacecraft, and the crater size distributions on lunar rock samples retrieved by the Apollo missions are fused into a single model. Within the model, the orbital distributions are expanded into a sum of contributions due to a number of known sources, including the asteroid belt with the emphasis on the prominent families Themis, Koronis, Eos and Veritas, as well as comets on Jupiter-encountering orbits. An attempt to incorporate the meteor orbit database acquired by the AMOR radar is also discussed.
The discovery of planetary systems outside of the solar system has challenged some of the tenets of planetary formation. Among the difficult-to-explain observations, are systems with a giant planet orbiting a very-low mass star, such as the recently discovered GJ~3512b planetary system, where a Jupiter-like planet orbits an $M$-star in a tight and eccentric orbit. Systems such as this one are not predicted by the core accretion theory of planet formation. Here we suggest a novel mechanism, in which the giant planet is born around a more typical Sun-like star ($M_{*,1}$), but is subsequently exchanged during a dynamical interaction with a flyby low-mass star ($M_{*,2}$). We perform state-of-the-art $N$-body simulations with $M_{*,1}=1M_odot$ and $M_{*,2}=0.1M_odot$ to study the statistical outcomes of this interaction, and show that exchanges result in high eccentricities for the new orbit around the low-mass star, while about half of the outcomes result in tighter orbits than the planet had around its birth star. We numerically compute the cross section for planet exchange, and show that an upper limit for the probability per planetary system to have undergone such an event is $Gammasim 4.4(M_{rm c}/100M_odot)^{-2}(a_{rm p}/{rm AU}) (sigma/1,{rm km},{rm s}^{-1})^{5}$Gyr$^{-1}$, where $a_{rm p}$ is the planet semi-major axis around the birth star, $sigma$ the velocity dispersion of the star cluster, and $M_{rm c}$ the total mass of the star cluster. Hence these planet exchanges could be relatively common for stars born in open clusters and groups, should already be observed in the exoplanet database, and provide new avenues to create unexpected planetary architectures.
We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distributions in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close-to-circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.
Fireball observations from camera networks provide position and time information along the trajectory of a meteoroid that is transiting our atmosphere. The complete dynamical state of the meteoroid at each measured time can be estimated using Bayesia n filtering techniques. A particle filter is a novel approach to modelling the uncertainty in meteoroid trajectories and incorporates errors in initial parameters, the dynamical model used and observed position measurements. Unlike other stochastic approaches, a particle filter does not require predefined values for initial conditions or unobservable trajectory parameters. The Bunburra Rockhole fireball (Spurny et al. 2012), observed by the Australian Desert Fireball Network (DFN) in 2007, is used to determine the effectiveness of a particle filter for use in fireball trajectory modelling. The final mass is determined to be $2.16pm1.33, kg$ with a final velocity of $6030pm216, m,s^{-1}$, similar to previously calculated values. The full automatability of this approach will allow an unbiased evaluation of all events observed by the DFN and lead to a better understanding of the dynamical state and size frequency distribution of asteroid and cometary debris in the inner solar system.
Fireball networks establish the trajectories of meteoritic material passing through Earths atmosphere, from which they can derive pre-entry orbits. Triangulated atmospheric trajectory data requires different orbit determination methods to those appli ed to observational data beyond the Earths sphere-of-influence, such as telescopic observations of asteroids. Currently, the vast majority of fireball networks determine and publish orbital data using an analytical approach, with little flexibility to include orbital perturbations. Here we present a novel numerical technique for determining meteoroid orbits from fireball network data and compare it to previously established methods. The re-entry of the Hayabusa spacecraft, with its known pre-Earth orbit, provides a unique opportunity to perform this comparison as it was observed by fireball network cameras. As initial sightings of the Hayabusa spacecraft and capsule were made at different altitudes, we are able to quantify the atmospheres influence on the determined pre-Earth orbit. Considering these trajectories independently, we found the orbits determined by the novel numerical approach to align closer to JAXAs telemetry in both cases. Comparing the orbits determined from the capsules re-entry shows the need for an atmospheric model, which the prevailing analytical approach lacks. Using simulations, we determine the atmospheric perturbation to become significant at ~90 km; higher than the first observations of typical meteorite dropping events. Using further simulations, we find the most substantial differences between techniques to occur at both low entry velocities and Moon passing trajectories. These regions of comparative divergence demonstrate the need for perturbation inclusion within the chosen orbit determination algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا