ﻻ يوجد ملخص باللغة العربية
We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to Standard Model particles and fields in the mass range of $10^{-16}$ $-$ $10^{-21}$ eV. The key advantage of this two-part ratio comparison is the differential sensitivities to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques. These results highlight the importance of using the best performing atomic clocks for fundamental physics applications as all-optical timescales are increasingly integrated with, and will eventually supplant, existing microwave timescales.
Ultralight scalar dark matter can interact with all massive Standard Model particles through a universal coupling. Such a coupling modifies the Standard Model particle masses and affects the dynamics of Big Bang Nucleosynthesis. We model the cosmolog
Starting from the evidence that dark matter indeed exists and permeates the entire cosmos, various bounds on its properties can be estimated. Beginning with the cosmic microwave background and large scale structure, we summarize bounds on the ultrali
We study the environmental dependence of ultralight scalar dark matter (DM) with linear interactions to the standard model particles. The solution to the DM field turns out to be a sum of the cosmic harmonic oscillation term and the local exponential
We report new limits on ultralight scalar dark matter (DM) with dilaton-like couplings to photons that can induce oscillations in the fine-structure constant alpha. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensi