ﻻ يوجد ملخص باللغة العربية
Background: The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli. This is due to the unique amenability of the unanesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Recently, there has been growing interest in pleiotropic effects of vagus nerve stimulation (VNS) on various organ systems such as innate immunity, metabolism, and appetite control. There is no approach to study this in utero and corresponding physiological understanding is scarce. New Method: Based on our previous presentation of a stable chronically instrumented unanesthetized fetal sheep model, here we describe the surgical instrumentation procedure allowing successful implantation of a cervical uni- or bilateral VNS probe with or without vagotomy. Results: In a cohort of 53 animals, we present the changes in blood gas, metabolic, and inflammatory markers during the postoperative period. We detail the design of a VNS probe which also allows recording from the nerve. We also present an example of vagus electroneurogram (VENG) recorded from the VNS probe and an analytical approach to the data. Comparison with Existing Methods: This method represents the first implementation of VENG/VNS in a large pregnant mammalian organism. Conclusions: This study describes a new surgical procedure allowing to record and manipulate chronically the vagus nerve activity in an animal model of human pregnancy.
We report three-dimensional and time-dependent numerical simulations of the propagation of electrical action potentials in a model of rabbit ventricular tissue. The simulations are performed using a finite-element method for the solution of the monod
Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for p
Glioblastoma is a rapidly evolving high-grade astrocytoma that is distinguished pathologically from lower grade gliomas by the presence of necrosis and microvascular hiperplasia. Necrotic areas are typically surrounded by hypercellular regions known
The detection and analysis of circulating tumor cells (CTCs) may enable a broad range of cancer-related applications, including the identification of acquired drug resistance during treatments. However, the non-scalable fabrication, prolonged sample
Thanks to advancements in diagnosis and treatment, prostate cancer patients have high long-term survival rates. Currently, an important goal is to preserve quality-of-life during and after treatment. The relationship between the radiation a patient r