ترغب بنشر مسار تعليمي؟ اضغط هنا

Two relativistic Kondo effects: Classification with particle and antiparticle impurities

125   0   0.0 ( 0 )
 نشر من قبل Kei Suzuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate two different types of relativistic Kondo effects, distinguished by heavy-impurity degrees of freedom, by focusing on the energy-momentum dispersion relations of the ground state with condensates composed of a light Dirac fermion and a nonrelativistic impurity fermion. Heavy fermion degrees of freedom are introduced in terms of two types of heavy-fermion effective theories, in other words, two heavy-fermion limits for the heavy Dirac fermion, which are known as the heavy-quark effective theories (HQETs) in high-energy physics. While the first one includes only the heavy-particle component, the second one contains both the heavy-particle and heavy-antiparticle components, which are opposite in their parity. From these theories, we obtain two types of Kondo effects, in which the dispersions near the Fermi surface are very similar, but they differ in the structure at low momentum. We also classify the possible forms of condensates in the two limits. The two Kondo effects will be examined by experiments with Dirac/Weyl semimetals or quark matter, lattice simulations, and cold-atom simulations.



قيم البحث

اقرأ أيضاً

We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demon strate the appearance of the Kondo effect. We point out that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals, topological insulators, and lattice QCD simulations.
Ballistic transport of helical edge modes in two-dimensional topological insulators is protected by time-reversal symmetry. Recently it was pointed out [1] that coupling of non-interacting helical electrons to an array of randomly anisotropic Kondo i mpurities can lead to a spontaneous breaking of the symmetry and, thus, can remove this protection. We have analyzed effects of the interaction between the electrons using a combination of the functional and the Abelian bosonization approaches. The suppression of the ballistic transport turns out to be robust in a broad range of the interaction strength. We have evaluated the renormalization of the localization length and have found that, for strong interaction, it is substantial. We have identified various regimes of the dc transport and discussed its temperature and sample size dependencies in each of the regimes.
Recently it was shown that anyons on the two-sphere naturally arise from a system of molecular impurities exchanging angular momentum with a many-particle bath (Phys. Rev. Lett. 126, 015301 (2021)). Here we further advance this approach and rigorousl y demonstrate that in the experimentally realized regime the lowest spectrum of two linear molecules immersed in superfluid helium corresponds to the spectrum of two anyons on the sphere. We develop the formalism within the framework of the recently experimentally observed angulon quasiparticle.
A two-dimensional quantum mechanical system consisting of a particle coupled to two magnetic impurities of different strengths, in a harmonic potential, is considered. Topological boundary conditions at impurity locations imply that the wave function s are linear combinations of two-dimensional harmonics. A number of low-lying states are computed numerically, and the qualitative features of the spectrum are analyzed.
We consider chiral electrons moving along the 1D helical edge of a 2D topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا