ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral properties of local gauge invariant composite operators in the $SU(2)$ Yang--Mills--Higgs model

188   0   0.0 ( 0 )
 نشر من قبل Duifje van Egmond
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectral properties of a set of local gauge (BRST) invariant composite operators are investigated in the $SU(2)$ Yang--Mills--Higgs model with a single Higgs field in the fundamental representation, quantized in the t Hooft $R_{xi}$-gauge. These operators can be thought of as a BRST invariant version of the elementary fields of the theory, the Higgs and gauge fields, with which they share a gauge independent pole mass. The two-point correlation functions of both BRST invariant composite operators and elementary fields, as well as their spectral functions, are investigated at one-loop order. It is shown that the spectral functions of the elementary fields suffer from a strong unphysical dependence from the gauge parameter $xi$, and can even exhibit positivity violating behaviour. In contrast, the BRST invariant local operators exhibit a well defined positive spectral density.



قيم البحث

اقرأ أيضاً

We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxilia ry fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.
The content of two additional Ward identities exhibited by the $U(1)$ Higgs model is exploited. These novel Ward identities can be derived only when a pair of local composite operators providing a gauge invariant setup for the Higgs particle and the massive vector boson is introduced in the theory from the beginning. Among the results obtained from the above mentioned Ward identities, we underline a new exact relationship between the stationary condition for the vacuum energy, the vanishing of the tadpoles and the vacuum expectation value of the gauge invariant scalar operator. We also present a characterization of the two-point correlation function of the composite operator corresponding to the vector boson in terms of the two-point function of the elementary gauge fields. Finally, a discussion on the connection between the cartesian and the polar parametrization of the complex scalar field is presented in the light of the Equivalence Theorem. The latter can in the current case be understood in the language of a constrained cohomology, which also allows to rewrite the action in terms of the aforementioned gauge invariant operators. We also comment on the diminished role of the global $U(1)$ symmetry and its breaking.
We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{rm min}$ can b e cast in local form through the introduction of an auxiliary Stueckelberg field. The localization procedure gives rise to an unconventional kind of Stueckelberg-type action which turns out to be renormalizable to all orders of perturbation theory. In particular, as a consequence of its gauge invariance, the anomalous dimension of the operator $A^2_{rm min}$ turns out to be independent from the gauge parameter $alpha$ entering the gauge-fixing condition, being thus given by the anomalous dimension of the operator $A^2$ in the Landau gauge.
As shown by Taubes, in the Bogomolnyi-Prasad-Sommerfield limit the SU(2) Yang-Mills-Higgs model possesses smooth finite energy solutions, which do not satisfy the first order Bogomolnyi equations. We construct numerically such a non-Bogomolnyi soluti on, corresponding to a monopole-antimonopole pair, and extend the construction to finite Higgs potential.
Magnetic degrees of freedom are manifested through violations of the Bianchi identities and associated with singular fields. Moreover, these singularities should not induce color non-conservation. We argue that the resolution of the constraint is tha t the singular fields, or defects are Abelian in nature. Recently proposed surface operators seem to represent a general solution to this constraint and can serve as a prototype of magnetic degrees of freedom. Some basic lattice observations, such as the Abelian dominance of the confining fields, are explained then as consequences of the original non-Abelian invariance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا