ﻻ يوجد ملخص باللغة العربية
The Lukash metric is a homogeneous gravitational wave which at late times approximates the behaviour of a generic class of spatially homogenous cosmological models with monotonically decreasing energy density. The transcription from Brinkmann to Baldwin-Jeffery-Rosen (BJR) to Bianchi coordinates is presented and the relation to a Sturm-Liouville equation is explained. The 6-parameter isometry group is derived. In the Bianchi VII range of parameters we have two BJR transciptions. However using either of them induces a mere relabeling of the geodesics and isometries. Following pioneering work of Siklos, we provide a self-contained account of the geometry and global structure of the spacetime. The latter contains a Killing horizon to the future of which the spacetime resembles an anisotropic version of the Milne cosmology and to the past of which it resemble the Rindler wedge.
We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einsteins vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by obse
The gravitational memory effect due to an exact plane wave provides us with an elementary description of the diffeomorphisms associated with soft gravitons. It is explained how the presence of the latter may be detected by observing the motion of fre
We revisit the two-field mimetic gravity model with shift symmetries recently proposed in the literature, especially the problems of degrees of freedom and stabilities. We first study the model at the linear cosmological perturbation level by quadrat
We discuss the scalar mode of gravitational waves emerging in the context of $F(R)$ gravity by taking into account the chameleon mechanism. Assuming a toy model with a specific matter distribution to reproduce the environment of detection experiment
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentu