ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotopic study of Raman active phonon modes in $beta$-Ga$_{2}$O$_{3}$

97   0   0.0 ( 0 )
 نشر من قبل Benjamin Janzen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Holding promising applications in power electronics, the wide band gap material gallium oxide has emerged as a vital alternative to materials like GaN and SiC. The detailed study of phonon modes in $beta$-Ga$_{2}$O$_{3}$ provides insights into fundamental material properties such as crystal structure and orientation and can contribute to the identification of dopants and point defects. We investigate the Raman active phonon modes of $beta$-Ga$_{2}$O$_{3}$ in two different oxygen isotope compositions ($^{16}$O,$^{18}$O) by experiment and theory: By carrying out polarized micro-Raman spectroscopy measurements on the (010) and ($bar{2}$01) planes, we determine the frequencies of all 15 Raman active phonons for both isotopologues. The measured frequencies are compared with the results of density functional perturbation theory (DFPT) calculations. In both cases, we observe a shift of Raman frequencies towards lower energies upon substitution of $^{16}$O with $^{18}$O. By quantifying the relative frequency shifts of the individual Raman modes, we identify the atomistic origin of all modes (Ga-Ga, Ga-O or O-O) and present the first experimental confirmation of the theoretically calculated energy contributions of O lattice sites to Raman modes. We find that oxygen substitution on the O$_{mathrm{II}}$ site leads to an elevated relative frequency shift compared to O$_{mathrm{I}}$ and O$_{mathrm{III}}$ sites. This study presents a blueprint for the future identification of different point defects in Ga$_{2}$O$_{3}$ by Raman spectroscopy.

قيم البحث

اقرأ أيضاً

We report the spontaneous decay of a soft, optical phonon in a solid. Using neutron spectroscopy, we find that specific phonon lifetimes in the relaxor PbMg$_{1/3}$Nb$_{2/3}$O$_{3}$ are anomalously short within well-defined ranges of energy and momen tum. This behavior is independent of ferroelectric order and occurs when the optical phonon with a specific energy and momentum can kinematically decay into two acoustic phonons with lower phase velocity. We interpret the well-known relaxor waterfall effect as a form of quasiparticle decay analogous to that previously reported in quantum spin liquids and quantum fluids.
Phonon-phonon anharmonic effects have a strong influence on the phonon spectrum; most prominent manifestation of these effects are the softening (shift in frequency) and broadening (change in FWHM) of the phonon modes at finite temperature. Using Ram an spectroscopy, we studied the temperature dependence of the FWHM and Raman shift of $mathrm{E_{2g}^1}$ and $mathrm{A_{1g}}$ modes for single-layer and natural bilayer MoS$_2$ over a broad range of temperatures ($8 < $T$ < 300$ K). Both the Raman shift and FWHM of these modes show linear temperature dependence for $T>100$ K, whereas they become independent of temperature for $T<100$ K. Using first-principles calculations, we show that three-phonon anharmonic effects intrinsic to the material can account for the observed temperature-dependence of the line-width of both the modes. It also plays an important role in determining the temperature-dependence of the frequency of the Raman modes. The observed evolution of the line-width of the A$_{1g}$ mode suggests that electron-phonon processes are additionally involved. From the analysis of the temperature-dependent Raman spectra of MoS$_2$ on two different substrates -- SiO$_2$ and hexagonal boron nitride, we disentangle the contributions of external stress and internal impurities to these phonon-related processes. We find that the renormalization of the phonon mode frequencies on different substrates is governed by strain and intrinsic doping. Our work establishes the role of intrinsic phonon anharmonic effects in deciding the Raman shift in MoS$_2$ irrespective of substrate and layer number.
Excitation of four coherent phonon modes of different symmetries has been realized in copper metaborate CuB$_2$O$_4$ via impulsive stimulated Raman scattering (ISRS). Phonons were detected by monitoring changes in the linear optical birefringence usi ng the balanced-detection (BD) technique. We compare the results of BD-ISRS experiment to the polarized spontaneous Raman scattering spectra. We show that the agreement between the two sets of data obtained by these allied techniques in a wide phonon frequencies range of 4-14 THz can be achieved by rigorously taking into account the symmetry of the phonon modes, and the corresponding excitation and detection selection rules. It is also important to account for the difference between incoherent and coherent phonons in terms of their contributions to the Raman scattering process. This comparative analysis highlights the importance of the ratio between the frequency of a particular mode, and the pump and probe spectral widths. We demonstrate analytically that the pump and probe pulse durations of 90 and 50 fs, respectively, used in our experiments, limit the highest frequency of the excited and detected coherent phonon modes to 12 THz, and define their relative amplitudes.
60 - Le Zhang , Bo Sun , Qili Zhang 2019
The in-depth understanding of hydrogen permeation through plutonium-oxide overlayers is the prerequisite to evaluate the complex hydriding induction period of Pu. In this work, the incorporation, diffusion and dissolution of hydrogen in $alpha$-Pu$_{ 2}$O$_{3}$ are investigated by the first-principles calculations and $textit{ab initio}$ thermodynamic method based on DFT+U and DFT-D3 schemes. Our study reveals that the hydrogen incorporation is endothermic and the separated H atoms prefer to recombine as H$_{2}$ molecules rather than reacting with $alpha$-Pu$_{2}$O$_{3}$. The H and H$_{2}$ diffusion are both feasible, generally, H will recombine first as H$_{2}$ and then migrate. Both pressure P$_{H2}$ and temperature can promote the hydrogen dissolution in $alpha$-Pu$_{2}$O$_{3}$. The single H$_{2}$ molecule incorporation and (H+H$_{2}$) mixed dissolution will successively appear when increasing P$_{H2}$. Compared to PuO$_{2}$, this work indicates that Pu sesquioxide is hardly reduced by hydrogen, but the porous $alpha$-Pu$_{2}$O$_{3}$ facilitates hydrogen transport in Pu oxide layers. We presents the microscopic picture of hydrogen behaviors in the defect-free $alpha$-Pu$_{2}$O$_{3}$, which could shed some light on the study of the hydriding induction period of Pu.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g amma$-phase is a ubiquitous defect in both $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films and doped $beta$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films we observe $gamma$-phase inclusions between nucleating islands of the $beta$-phase at lower growth temperatures (~400-600 $^{circ}$C). In doped $beta$-Ga$_2$O$_3$, a thin layer of the $gamma$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $gamma$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{circ}$C. Ga interstitials are observed in $beta$-phase, especially near the interface with the $gamma$-phase. By imaging the same region of the surface of a Sn-doped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{circ}$C, a $gamma$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $beta$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $gamma$-phase, and more generally that the more-open $gamma$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا