ﻻ يوجد ملخص باللغة العربية
We investigate the problem of multi-party private set intersection (MP-PSI). In MP-PSI, there are $M$ parties, each storing a data set $mathcal{p}_i$ over $N_i$ replicated and non-colluding databases, and we want to calculate the intersection of the data sets $cap_{i=1}^M mathcal{p}_i$ without leaking any information beyond the set intersection to any of the parties. We consider a specific communication protocol where one of the parties, called the leader party, initiates the MP-PSI protocol by sending queries to the remaining parties which are called client parties. The client parties are not allowed to communicate with each other. We propose an information-theoretic scheme that privately calculates the intersection $cap_{i=1}^M mathcal{p}_i$ with a download cost of $D = min_{t in {1, cdots, M}} sum_{i in {1, cdots M}setminus {t}} leftlceil frac{|mathcal{p}_t|N_i}{N_i-1}rightrceil$. Similar to the 2-party PSI problem, our scheme builds on the connection between the PSI problem and the multi-message symmetric private information retrieval (MM-SPIR) problem. Our scheme is a non-trivial generalization of the 2-party PSI scheme as it needs an intricate design of the shared common randomness. Interestingly, in terms of the download cost, our scheme does not incur any penalty due to the more stringent privacy constraints in the MP-PSI problem compared to the 2-party PSI problem.
We study the problem of private set intersection (PSI). In this problem, there are two entities $E_i$, for $i=1, 2$, each storing a set $mathcal{P}_i$, whose elements are picked from a finite field $mathbb{F}_K$, on $N_i$ replicated and non-colluding
We consider the problem of private information retrieval from $N$ emph{storage-constrained} databases. In this problem, a user wishes to retrieve a single message out of $M$ messages (of size $L$) without revealing any information about the identity
We investigate the problem of semantic private information retrieval (semantic PIR). In semantic PIR, a user retrieves a message out of $K$ independent messages stored in $N$ replicated and non-colluding databases without revealing the identity of th
We introduce the problem of emph{timely} private information retrieval (PIR) from $N$ non-colluding and replicated servers. In this problem, a user desires to retrieve a message out of $M$ messages from the servers, whose contents are continuously up
A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedb