ﻻ يوجد ملخص باللغة العربية
V341 Ara was recently recognised as one of the closest (d ~ 150 pc) and brightest (V~ 10) nova-like cataclysmic variables. This unique system is surrounded by a bright emission nebula, likely to be the remnant of a recent nova eruption. Embedded within this nebula is a prominent bow-shock, where the systems accretion disc wind runs into its own nova shell. In order to establish its fundamental properties, we present the first comprehensive multi-wavelength study of the system. Long-term photometry reveals quasi-periodic, super-orbital variations with a characteristic time-scale of 10-16 days and typical amplitude of ~1 mag. High-cadence photometry from TESS reveals for the first time both the orbital period and a negative superhump period. The latter is usually interpreted as the signature of a tilted accretion disc. We propose a recently developed disc instability model as a plausible explanation for the photometric behaviour. In our spectroscopic data, we clearly detect anti-phased absorption and emission line components. Their radial velocities suggest a high mass ratio, which in turn implies an unusually low white dwarf mass. We also constrain the wind mass-loss rate of the system from the spatially resolved [O iii] emission produced in the bow-shock; this can be used to test and calibrate accretion disc wind models. We suggest a possible association between V341 Ara and a guest star mentioned in Chinese historical records in AD1240. If this marks the date of the systems nova eruption, V341 Ara would be the oldest recovered nova of its class and an excellent laboratory for testing nova theory.
V341 Arae is a 10th-magnitude variable star in the southern hemisphere, discovered over a century ago by Henrietta Leavitt but relatively little studied since then. Although historically considered to be a Cepheid, it is actually blue and coincides w
The radio light curves of novae rise and fall over the course of months to years, allowing for detailed observations of the evolution of the nova shell. However, the main parameter determined by radio models of nova explosions - the mass of the eject
GK Persei (1901, the Firework Nebula) is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the shape softwar
We report on the detection of the linear rms-flux relation in two accreting white dwarf binary systems: V1504 Cyg and KIC 8751494. The rms-flux relation relates the absolute root-mean-square (rms) variability of the light curve to its mean flux. The
A classical nova is an eruption on the surface of a white dwarf in an accreting binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell. The shaping mechanisms of nova shells are probes of the processes