ﻻ يوجد ملخص باللغة العربية
Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant ($H_0$). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for $H_0$ contraints. Here, we show measurement of $H_0$ using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find $H_0 = 73.8^{+6.3}_{-5.8}$,$mathrm{km}$ $mathrm{s}^{-1}$ $mathrm{Mpc}^{-1}$ and $H_0 = 71.2^{+3.2}_{-3.1}$,$mathrm{km}$ $mathrm{s}^{-1}$ $mathrm{Mpc}^{-1}$ for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs.
The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a
We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform
The Hubble constant ($H_0$) measures the current expansion rate of the Universe, and plays a fundamental role in cosmology. Tremendous effort has been dedicated over the past decades to measure $H_0$. Notably, Planck cosmic microwave background (CMB)
Motivated by the large observed diversity in the properties of extra-galactic extinction by dust, we re-analyse the Cepheid calibration used to infer the local value of the Hubble constant, $H_0$, from Type Ia supernovae. Unlike the SH0ES team, we do
Combined with X-ray imaging and spectral data, observations of the Sunyaev-Zeldovich effect (SZE) can be used to determine direct distances to galaxy clusters. These distances are independent of the extragalactic distance ladder and do not rely on cl