ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Hubble Constant with a sample of kilonovae

129   0   0.0 ( 0 )
 نشر من قبل Michael Coughlin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Kilonovae produced by the coalescence of compact binaries with at least one neutron star are promising standard sirens for an independent measurement of the Hubble constant ($H_0$). Through their detection via follow-up of gravitational-wave (GW), short gamma-ray bursts (sGRBs) or optical surveys, a large sample of kilonovae (even without GW data) can be used for $H_0$ contraints. Here, we show measurement of $H_0$ using light curves associated with four sGRBs, assuming these are attributable to kilonovae, combined with GW170817. Including a systematic uncertainty on the models that is as large as the statistical ones, we find $H_0 = 73.8^{+6.3}_{-5.8}$,$mathrm{km}$ $mathrm{s}^{-1}$ $mathrm{Mpc}^{-1}$ and $H_0 = 71.2^{+3.2}_{-3.1}$,$mathrm{km}$ $mathrm{s}^{-1}$ $mathrm{Mpc}^{-1}$ for two different kilonova models that are consistent with the local and inverse-distance ladder measurements. For a given model, this measurement is about a factor of 2-3 more precise than the standard-siren measurement for GW170817 using only GWs.

قيم البحث

اقرأ أيضاً

The detection of GW170817 and the identification of its host galaxy have allowed for the first standard-siren measurement of the Hubble constant, with an uncertainty of $sim 14%$. As more detections of binary neutron stars with redshift measurement a re made, the uncertainty will shrink. The dominating factors will be the number of joint detections and the uncertainty on the luminosity distance of each event. Neutron star black hole mergers are also promising sources for advanced LIGO and Virgo. If the black hole spin induces precession of the orbital plane, the degeneracy between luminosity distance and the orbital inclination is broken, leading to a much better distance measurement. In addition neutron star black hole sources are observable to larger distances, owing to their higher mass. Neutron star black holes could also emit electromagnetic radiation: depending on the black hole spin and on the mass ratio, the neutron star can be tidally disrupted resulting in electromagnetic emission. We quantify the distance uncertainty for a wide range of black hole mass, spin and orientations and find that the 1-$sigma$ statistical uncertainty can be up to a factor of $sim 10$ better than for a non-spinning binary neutron star merger with the same signal-to-noise ratio. The better distance measurement, the larger gravitational-wave detectable volume, and the potentially bright electromagnetic emission, imply that spinning black hole neutron star binaries can be the optimal standard siren sources as long as their astrophysical rate is larger than $O(10)$ Gpc$^{-3}$yr$^{-1}$, a value allowed by current astrophysical constraints.
We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform ation on the left-hand side of the Hubble-Lema^itre law is provided by the statistical knowledge on the redshift distribution of sources. We assume that source distribution in redshift depends on just one unknown hyper-parameter, modeling our ignorance of the astrophysical binary black hole distribution. With tens of thousands of these black sirens -- a realistic figure for the third generation detectors Einstein Telescope and Cosmic Explorer -- an observational constraint on the value of the Hubble parameter at percent level can be obtained. This method has the advantage of not relying on electromagnetic counterparts, which accompany a very small fraction of gravitational wave detections, nor on often unavailable or incomplete galaxy catalogs.
The Hubble constant ($H_0$) measures the current expansion rate of the Universe, and plays a fundamental role in cosmology. Tremendous effort has been dedicated over the past decades to measure $H_0$. Notably, Planck cosmic microwave background (CMB) and the local Cepheid-supernovae distance ladder measurements determine $H_0$ with a precision of $sim 1%$ and $sim 2%$ respectively. A $3$-$sigma$ level of discrepancy exists between the two measurements, for reasons that have yet to be understood. Gravitational wave (GW) sources accompanied by electromagnetic (EM) counterparts offer a completely independent standard siren (the GW analogue of an astronomical standard candle) measurement of $H_0$, as demonstrated following the discovery of the neutron star merger, GW170817. This measurement does not assume a cosmological model and is independent of a cosmic distance ladder. The first joint analysis of the GW signal from GW170817 and its EM localization led to a measurement of $H_0=74^{+16}_{-8}$ km/s/Mpc (median and symmetric $68%$ credible interval). In this analysis, the degeneracy in the GW signal between the source distance and the weakly constrained viewing angle dominated the $H_0$ measurement uncertainty. Recently, Mooley et al. (2018) obtained tight constraints on the viewing angle using high angular resolution imaging of the radio counterpart of GW170817. Here we obtain a significantly improved measurement $H_0=68.9^{+4.7}_{-4.6}$ km/s/Mpc by using these new radio observations, combined with the previous GW and EM data. We estimate that 15 more localized GW170817-like events (comparable signal-to-noise ratio, favorable orientation), having radio images and light curve data, will potentially bring resolution to the tension between the Planck and Cepheid-supernova measurements, as compared to 50-100 GW events without such data.
Motivated by the large observed diversity in the properties of extra-galactic extinction by dust, we re-analyse the Cepheid calibration used to infer the local value of the Hubble constant, $H_0$, from Type Ia supernovae. Unlike the SH0ES team, we do not enforce a universal color-luminosity relation to correct the near-IR Cepheid magnitudes. Instead, we focus on a data driven method, where the measured colors of the Cepheids are used to derive a color-luminosity relation for each galaxy individually. We present two different analyses, one based on Wesenheit magnitudes, a common practice in the field that attempts to combine corrections from both extinction and variations in intrinsic colors, resulting in $H_0=66.9pm 2.5$ km/s/Mpc, in agreement with the Planck value. In the second approach, we calibrate using color excesses with respect to derived average intrinsic colors, yielding $H_0=71.8pm 1.6$ km/s/Mpc, a $2.7,sigma$ tension with the value inferred from the cosmic microwave background. Hence, we argue that systematic uncertainties related to the choice of Cepheid color-luminosity calibration method currently inhibits us from measuring $H_0$ to the precision required to claim a substantial tension with Planck data.
55 - Erik D. Reese 2003
Combined with X-ray imaging and spectral data, observations of the Sunyaev-Zeldovich effect (SZE) can be used to determine direct distances to galaxy clusters. These distances are independent of the extragalactic distance ladder and do not rely on cl usters being standard candles or rulers. Observations of the SZE have progressed from upper limits to high signal-to-noise ratio detections and imaging of the SZE. SZE/X-ray determined distances to galaxy clusters are beginning to trace out the theoretical angular-diameter distance relation. The current ensemble of 41 SZE/X-ray distances to galaxy clusters imply a Hubble constant of H_0~ 61 +/- 3 +/- 18 km s-1 Mpc-1, where the uncertainties are statistical followed by systematic at 68% confidence. With a sample of high-redshift galaxy clusters, SZE/X-ray distances can be used to measure the geometry of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا