ترغب بنشر مسار تعليمي؟ اضغط هنا

PHAT XX. AGB stars and other cool giants in M31 star clusters

118   0   0.0 ( 0 )
 نشر من قبل Leo Girardi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of AGB stars in clusters provides key constraints for stellar models, as has been demonstrated with historical data from the Magellanic Clouds. In this work, we look for candidate AGB stars in M31 star clusters from the Panchromatic Hubble Andromeda Treasury (PHAT) survey. Our photometric criteria selects stars brighter than the tip of the red giant branch, which includes the bulk of the thermally-pulsing AGB stars as well as early-AGB stars and other luminous cool giants expected in young stellar populations (e.g. massive red supergiants, and intermediate-mass red helium-burning stars). The AGB stars can be differentiated, a posteriori, using the ages already estimated for our cluster sample. 937 candidates are found within the cluster aperture radii, half (450) of which are very likely cluster members. Cross-matching with additional databases reveals two carbon stars and ten secure variables among them. The field-corrected age distribution reveals the presence of young supergiants peaking at ages smaller than 100 Myr, followed by a long tail of AGB stars extending up to the oldest possible ages. This long tail reveals the general decrease in the numbers of AGB stars from initial values of 50e-6/Msun at 100 Myr down to 5e-6/Msun at 10 Gyr. Theoretical models of near-solar metallicity reproduce this general trend, although with localized discrepancies over some age intervals, whose origin is not yet identified. The entire catalogue is released together with finding charts to facilitate follow-up studies.



قيم البحث

اقرأ أيضاً

The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going Hubble Space Telescope (HST) multi-cycle program that will image one-third of the M31 disk at high resolution, with wavelength coverage from the ultraviolet through the near-infrared. T his dataset will allow for the construction of the most complete catalog of stellar clusters obtained for a spiral galaxy. Here, we provide an overview of the PHAT survey, a progress report on the status of observations and analysis, and preliminary results from the PHAT cluster program. Although only ~20% of the survey is complete, the superior resolution of HST has allowed us to identify hundreds of new intermediate and low mass clusters. As a result, the size of the cluster sample within the Year 1 survey footprint has grown by a factor of three relative to previous catalogs.
132 - A. Buzzoni 2010
We have investigated the relevant trend of the bolometric correction (BC) at the cool-temperature regime of red giant stars and its possible dependence on stellar metallicity. Our analysis relies on a wide sample of optical-infrared spectroscopic obs ervations, along the 3500A-2.5micron wavelength range, for a grid of 92 red giant stars in five (3 globular + 2 open) Galactic clusters, along the -2.2<[Fe/H]<+0.4 metallicity range. Bolometric magnitudes have been found within an internal accuracy of a few percent. Making use of our new database, we provide a set of fitting functions for the V and K BC vs. Teff and broad-band colors, valid over the interval 3300K<Teff<5000K, especially suited for Red Giants. No evident drift of both BC(V) and BC(K) with [Fe/H] is found. Things may be different, however, for the B-band correction, given a clear (B-V) vs. [Fe/H] correlation in place for our data, with metal-poor stars displaying a bluer (B-V) with respect to the metal-rich sample, for fixed Teff. Our empirical bolometric scale supports the conclusion that (a) BC(K) from the most recent studies are reliable within <0.1 mag over the whole color/temperature range considered in this paper, and (b) the same conclusion apply to BC(V) only for stars warmer than ~3800K. At cooler temperatures the agreement is less general, and MARCS models are the only ones providing a satisfactory match to observations.
We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high S/N Hectospec data (Caldwell et al 2010). The data are well suited for analysis of M31s inner regions because we took partic ular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal poor clusters show kinematics which are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.
The Galactic Center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Making use of the latest APOGEE data release (DR16), we are able for the fi rst time to study cool AGB stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the RGB.We study metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE/ASPCAP pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic Center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ~ +0.3 dex and a metal-poor peak around [Fe/H]= -0.5 dex, which is 0.2 dex poorer than Baades Window. The alpha-elements Mg, Si, Ca, and O show a similar trend to the Galactic Bulge. The metal-poor component is enhanced in the alpha-elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high velocity stars with $rm v_{gal} > 300,km/s$; the metal-rich stars show a much higher rotation velocity ($rm sim 200,km/s$) with respect to the metal-poor stars ($rm sim 140,km/s$). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disc and the nuclear star cluster show distinct chemical signatures and might be formed differently.
89 - Evan N. Kirby 2016
Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) s tars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 +/- 0.1)% for the RGB, (1.6 +/- 1.1)% for the AGB, and (0.3 +/- 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا