ترغب بنشر مسار تعليمي؟ اضغط هنا

Unraveling the complex magnetosphere of the B star HD 133880 via wideband observation of coherent radio emission

55   0   0.0 ( 0 )
 نشر من قبل Barnali Das
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 133880 is one of the six hot magnetic stars known to produce coherent pulsed radio emission by the process of electron cyclotron maser emission (ECME). In this paper, we present observations of ECME from this star over a wide frequency range, covering nearly 300 - 4000 MHz with the Giant Metrewave Radio Telescope (GMRT) and the Karl G. Jansky Very Large Array (VLA). This study, which is the first of its kind, has led to the discovery of several interesting characteristics of the phenomenon and also of the host star. We find that the observable properties of ECME pulses, e.g. the time lag between right and left circularly polarized pulses, the amplitudes of the pulses, and their upper cut-off frequencies appear to be dependent on the stellar orientation with respect to the line of sight. We suggest that all these phenomena, which are beyond the ideal picture, can be attributed to a highly azimuthally asymmetric matter distribution in the magnetosphere about the magnetic field axis, which is a consequence of both the high obliquity (the angle between rotation axis and the magnetic field axis) of the star and the deviation of the stellar magnetic field from a dipolar topology.


قيم البحث

اقرأ أيضاً

We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavel ength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modeling of the radio emission for HR5907. The wavelength-dependent radio light-curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light-curves leads us to conclude that the stellar magnetic field of HR5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907.
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In order to study magnetospheric interactions between the star and the planet, we explore the large-scale magnetic field and activity of the host star. We collected spectra us ing the ESPaDOnS and the NARVAL spectropolarimeters, installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and July 2008). HD 189733 has a mainly toroidal surface magnetic field, having a strength that reaches up to 40 G. The star is differentially rotating, with latitudinal angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d respectively. The study of the stellar activity shows that it is modulated mainly by the stellar rotation (rather than by the orbital period or the beat period between the stellar rotation and the orbital periods). We report no clear evidence of magnetospheric interactions between the star and the planet. We also extrapolated the field in the stellar corona and calculated the planetary radio emission expected for HD 189733b given the reconstructed field topology. The radio flux we predict in the framework of this model is time variable and potentially detectable with LOFAR.
249 - P. Leto , C. Trigilio , C.S. Buemi 2020
The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multi-wavelength (1.6-16.7 GHz) ATCA measurements of the early-type magnetic star rho OphC, which is a flat-spectrum non-thermal radio so urce. The rho OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about 60% at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the rho OphC magnetosphere. Interestingly, the detection of the rho OphCs ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. rho OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.
111 - P. Leto , C. Trigilio , C.S. Buemi 2016
In this paper we simulate the cyclic circularly-polarised pulses of the ultra-cool dwarf TVLM513-46546, observed with the VLA at 4.88 and 8.44 GHz on May 2006, by using a 3D model of the auroral radio emission from the stellar magnetosphere. During t his epoch, the radio light curves are characterised by two pulses left-hand polarised at 4.88 GHz, and one doubly-peaked (of opposite polarisations) pulse at 8.44 GHz. To take into account the possible deviation from the dipolar symmetry of the stellar magnetic field topology, the model described in this paper is also able to simulate the auroral radio emission from a magnetosphere shaped like an offset-dipole. To reproduce the timing and pattern of the observed pulses, we explored the space of parameters controlling the auroral beaming pattern and the geometry of the magnetosphere. Through the analysis of the TVLM513-46546 auroral radio emission, we derive some indications on the magnetospheric field topology that is able to simultaneously reproduce the timing and patterns of the auroral pulses measured at 4.88 and 8.44 GHz. Each set of model solutions simulates two auroral pulses (singly or doubly peaked) per period. To explain the presence of only one 8.44 GHz pulse per period, we analyse the case of auroral radio emission limited only to a magnetospheric sector activated by an external body, like the case of the interaction of Jupiter with its moons.
In this paper we report 23 magnetic field measurements of the B3IV star HD 23478: 12 obtained from high resolution Stokes $V$ spectra using the ESPaDOnS (CFHT) and Narval (TBL) spectropolarimeters, and 11 from medium resolution Stokes $V$ spectra obt ained with the DimaPol spectropolarimeter (DAO). HD 23478 was one of two rapidly rotating stars identified as potential centrifugal magnetosphere hosts based on IR observations from the Apache Point Observatory Galactic Evolution Experiment survey. We derive basic physical properties of this star including its mass ($M=6.1^{+0.8}_{-0.7},M_odot$), effective temperature ($T_{rm eff}=20pm2,$kK), radius ($R=2.7^{+1.6}_{-0.9},R_odot$), and age ($tau_{rm age}=3^{+37}_{-1},$Myr). We repeatedly detect weakly-variable Zeeman signatures in metal, He and H lines in all our observations corresponding to a longitudinal magnetic field of $langle B_zrangleapprox-2.0,$kG. The rotational period is inferred from Hipparcos photometry ($P_{rm rot}=1.0498(4),$d). Under the assumption of the Oblique Rotator Model, our obsevations yield a surface dipole magnetic field of strength $B_dgeq9.5,$kG that is approximately aligned with the stellar rotation axis. We confirm the presence of strong and broad H$alpha$ emission and gauge the volume of this stars centrifugal magnetosphere to be consistent with those of other H$alpha$ emitting centrifugal magnetosphere stars based on the large inferred Alfven to Kepler radius ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا