ﻻ يوجد ملخص باللغة العربية
We show analytically that training a neural network by conditioned stochastic mutation or neuroevolution of its weights is equivalent, in the limit of small mutations, to gradient descent on the loss function in the presence of Gaussian white noise. Averaged over independent realizations of the learning process, neuroevolution is equivalent to gradient descent on the loss function. We use numerical simulation to show that this correspondence can be observed for finite mutations,for shallow and deep neural networks. Our results provide a connection between two families of neural-network training methods that are usually considered to be fundamentally different.
The development of machine learning is promoting the search for fast and stable minimization algorithms. To this end, we suggest a change in the current gradient descent methods that should speed up the motion in flat regions and slow it down in stee
There is an increasing interest in emulating Spiking Neural Networks (SNNs) on neuromorphic computing devices due to their low energy consumption. Recent advances have allowed training SNNs to a point where they start to compete with traditional Arti
Deep neural networks (DNNs) have achieved remarkable success in computer vision; however, training DNNs for satisfactory performance remains challenging and suffers from sensitivity to empirical selections of an optimization algorithm for training. S
For artificial general intelligence (AGI) it would be efficient if multiple users trained the same giant neural network, permitting parameter reuse, without catastrophic forgetting. PathNet is a first step in this direction. It is a neural network al
The conjugate gradient (CG) method, a standard and vital way of minimizing the energy of a variational state, is applied to solve several problems in Skyrmion physics. The single-Skyrmion profile optimizing the energy of a two-dimensional chiral magn