ترغب بنشر مسار تعليمي؟ اضغط هنا

Object Detection with a Unified Label Space from Multiple Datasets

94   0   0.0 ( 0 )
 نشر من قبل Xiangyun Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given multiple datasets with different label spaces, the goal of this work is to train a single object detector predicting over the union of all the label spaces. The practical benefits of such an object detector are obvious and significant application-relevant categories can be picked and merged form arbitrary existing datasets. However, naive merging of datasets is not possible in this case, due to inconsistent object annotations. Consider an object category like faces that is annotated in one dataset, but is not annotated in another dataset, although the object itself appears in the latter images. Some categories, like face here, would thus be considered foreground in one dataset, but background in another. To address this challenge, we design a framework which works with such partial annotations, and we exploit a pseudo labeling approach that we adapt for our specific case. We propose loss functions that carefully integrate partial but correct annotations with complementary but noisy pseudo labels. Evaluation in the proposed novel setting requires full annotation on the test set. We collect the required annotations and define a new challenging experimental setup for this task based one existing public datasets. We show improved performances compared to competitive baselines and appropriate adaptations of existing work.



قيم البحث

اقرأ أيضاً

Knowledge distillation methods are proved to be promising in improving the performance of neural networks and no additional computational expenses are required during the inference time. For the sake of boosting the accuracy of object detection, a gr eat number of knowledge distillation methods have been proposed particularly designed for object detection. However, most of these methods only focus on feature-level distillation and label-level distillation, leaving the label assignment step, a unique and paramount procedure for object detection, by the wayside. In this work, we come up with a simple but effective knowledge distillation approach focusing on label assignment in object detection, in which the positive and negative samples of student network are selected in accordance with the predictions of teacher network. Our method shows encouraging results on the MSCOCO2017 benchmark, and can not only be applied to both one-stage detectors and two-stage detectors but also be utilized orthogonally with other knowledge distillation methods.
Lesion detection is an important problem within medical imaging analysis. Most previous work focuses on detecting and segmenting a specialized category of lesions (e.g., lung nodules). However, in clinical practice, radiologists are responsible for f inding all possible types of anomalies. The task of universal lesion detection (ULD) was proposed to address this challenge by detecting a large variety of lesions from the whole body. There are multiple heterogeneously labeled datasets with varying label completeness: DeepLesion, the largest dataset of 32,735 annotated lesions of various types, but with even more missing annotation instances; and several fully-labeled single-type lesion datasets, such as LUNA for lung nodules and LiTS for liver tumors. In this work, we propose a novel framework to leverage all these datasets together to improve the performance of ULD. First, we learn a multi-head multi-task lesion detector using all datasets and generate lesion proposals on DeepLesion. Second, missing annotations in DeepLesion are retrieved by a new method of embedding matching that exploits clinical prior knowledge. Last, we discover suspicious but unannotated lesions using knowledge transfer from single-type lesion detectors. In this way, reliable positive and negative regions are obtained from partially-labeled and unlabeled images, which are effectively utilized to train ULD. To assess the clinically realistic protocol of 3D volumetric ULD, we fully annotated 1071 CT sub-volumes in DeepLesion. Our method outperforms the current state-of-the-art approach by 29% in the metric of average sensitivity.
Label assignment in object detection aims to assign targets, foreground or background, to sampled regions in an image. Unlike labeling for image classification, this problem is not well defined due to the objects bounding box. In this paper, we inves tigate the problem from a perspective of distillation, hence we call Label Assignment Distillation (LAD). Our initial motivation is very simple, we use a teacher network to generate labels for the student. This can be achieved in two ways: either using the teachers prediction as the direct targets (soft label), or through the hard labels dynamically assigned by the teacher (LAD). Our experiments reveal that: (i) LAD is more effective than soft-label, but they are complementary. (ii) Using LAD, a smaller teacher can also improve a larger student significantly, while soft-label cant. We then introduce Co-learning LAD, in which two networks simultaneously learn from scratch and the role of teacher and student are dynamically interchanged. Using PAA-ResNet50 as a teacher, our LAD techniques can improve detectors PAA-ResNet101 and PAA-ResNeXt101 to $46 rm AP$ and $47.5rm AP$ on the COCO test-dev set. With a strong teacher PAA-SwinB, we improve the PAA-ResNet50 to $43.9rm AP$ with only 1x schedule training, and PAA-ResNet101 to $47.9rm AP$, significantly surpassing the current methods. Our source code and checkpoints will be released at https://github.com/cybercore-co-ltd/CoLAD_paper.
Large-scale datasets with high-quality labels are desired for training accurate deep learning models. However, due to the annotation cost, datasets in medical imaging are often either partially-labeled or small. For example, DeepLesion is such a larg e-scale CT image dataset with lesions of various types, but it also has many unlabeled lesions (missing annotations). When training a lesion detector on a partially-labeled dataset, the missing annotations will generate incorrect negative signals and degrade the performance. Besides DeepLesion, there are several small single-type datasets, such as LUNA for lung nodules and LiTS for liver tumors. These datasets have heterogeneous label scopes, i.e., different lesion types are labeled in different datasets with other types ignored. In this work, we aim to develop a universal lesion detection algorithm to detect a variety of lesions. The problem of heterogeneous and partial labels is tackled. First, we build a simple yet effective lesion detection framework named Lesion ENSemble (LENS). LENS can efficiently learn from multiple heterogeneous lesion datasets in a multi-task fashion and leverage their synergy by proposal fusion. Next, we propose strategies to mine missing annotations from partially-labeled datasets by exploiting clinical prior knowledge and cross-dataset knowledge transfer. Finally, we train our framework on four public lesion datasets and evaluate it on 800 manually-labeled sub-volumes in DeepLesion. Our method brings a relative improvement of 49% compared to the current state-of-the-art approach in the metric of average sensitivity. We have publicly released our manual 3D annotations of DeepLesion in https://github.com/viggin/DeepLesion_manual_test_set.
Determining positive/negative samples for object detection is known as label assignment. Here we present an anchor-free detector named AutoAssign. It requires little human knowledge and achieves appearance-aware through a fully differentiable weighti ng mechanism. During training, to both satisfy the prior distribution of data and adapt to category characteristics, we present Center Weighting to adjust the category-specific prior distributions. To adapt to object appearances, Confidence Weighting is proposed to adjust the specific assign strategy of each instance. The two weighting modules are then combined to generate positive and negative weights to adjust each locations confidence. Extensive experiments on the MS COCO show that our method steadily surpasses other best sampling strategies by large margins with various backbones. Moreover, our best model achieves 52.1% AP, outperforming all existing one-stage detectors. Besides, experiments on other datasets, e.g., PASCAL VOC, Objects365, and WiderFace, demonstrate the broad applicability of AutoAssign.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا