ﻻ يوجد ملخص باللغة العربية
The Alcubierre metric is a spacetime geometry where a massive particle inside a spacetime distortion, called warp bubble, is able to travel at velocities arbitrarily higher than the velocity of light, a feature known as the warp drive. This is a consequence of general relativity, which allows global superluminal velocities but restricts local speeds to subluminal ones as required by special relativity. In this work we solved the Einstein equations for the Alcubierre warp drive spacetime geometry considering the dust matter distribution as source, since the Alcubierre metric was not originally advanced as a solution of the Einstein equations, but as a spacetime geometry proposed without a source gravity field. We found out that all Einstein equations solutions of this geometry containing pressureless dust lead to vacuum solutions. We also concluded that these solutions connect the Alcubierre metric to the Burgers equation, which describes shock waves moving through an inviscid fluid. Our results also indicated that these shock waves behave as plane waves.
The Alcubierre warp drive metric is a spacetime construction where a massive particle located inside a spacetime distortion, called warp bubble, travels at velocities arbitrarily higher than the velocity of light. This theoretically constructed space
The Alcubierre warp drive metric is a spacetime geometry featuring a spacetime distortion, called warp bubble, where a massive particle inside it acquires global superluminal velocities, or warp speeds. This work presents solutions of the Einstein eq
The Alcubierre metric describes a spacetime geometry that allows a massive particle inside a spacetime distortion, called warp bubble, to travel with superluminal global velocities. In this work we advance solutions of the Einstein equations with the
A process for using curvature invariants is applied to evaluate the accelerating Natario warp drive. Curvature invariants are independent of coordinate bases and plotting the invariants is free of coordinate mapping distortions. While previous works
This paper describes the Fortran 77 code SIMU, version 1.1, designed for numerical simulations of observational relations along the past null geodesic in the Lemaitre-Tolman-Bondi (LTB) spacetime. SIMU aims at finding scale invariant solutions of the