ﻻ يوجد ملخص باللغة العربية
We survey our recent articles dealing with one dimensional attractive zero range processes moving under site disorder. We suppose that the underlying random walks are biased to the right and so hyperbolic scaling is expected. Under the conditions of our model the process admits a maximal invariant measure. The initial focus of the project was to find conditions on the initial law to entail convergence in distribution to this maximal distribution, when it has a finite density. Somewhat surprisingly, necessary and sufficient conditions were found. In this part hydrody-namic results were employed chiefly as a tool to show distributional convergence but subsequently we developed a theory for hydrodynamic limits treating profiles possessing densities that did not admit corresponding equilibria. Finally we derived strong local equilibrium results.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We describe precise a
We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. For any given environment satisfying suitable aver
We establish necessary and sufficient conditions for weak convergence to the upper invariant measure for asymmetric nearest neighbour zero range processes with non homogeneous jump rates. The class of environments considered is close to that consider
We discuss necessary and sufficient conditions for the convergence of disordered asymmetric zero-range process to the critical invariant measures.
We consider the exclusion process on segments of the integers in a site-dependent random environment. We assume to be in the ballistic regime in which a single particle has positive linear speed. Our goal is to study the mixing time of the exclusion