ﻻ يوجد ملخص باللغة العربية
Early star-forming galaxies produced copious ionizing photons. A fraction of these photons escaped gas within galaxies to reionize the entire Universe. This escape fraction is crucial for determining how the Universe became reionized, but the neutral intergalactic medium precludes direct measurement of the escape fraction at high-redshifts. Indirect estimates of the escape fraction must describe how the Universe was reionized. Here, we present new Keck Cosmic Web Imager spatially-resolved spectroscopy of the resonant Mg II 2800 doublet from a redshift 0.36 galaxy, J1503+3644, with a previously observed escape fraction of 6%. The Mg II emission has a similar spatial extent as the stellar continuum, and each of the Mg II doublet lines are well-fit by single Gaussians. The Mg II is optically thin. The intrinsic flux ratio of the red and blue Mg II emission line doublet, $R = F_{2796}/F_{2803}$, is set by atomic physics to be two, but Mg$^+$ gas along the line of sight decreases $R$ proportional to the Mg II optical depth. Combined with the metallicity, $R$ estimates the neutral gas column density. The observed $R$ ranges across the galaxy from 0.8-2.7, implying a factor of 2 spatial variation of the relative escape fraction. All of the ionizing photons that escape J1503+3644 pass through regions of high $R$. We combine the Mg II emission and dust attenuation to accurately estimate the absolute escape fractions for ten local Lyman Continuum emitting galaxies and suggest that Mg II can predict escape fraction within the Epoch of Reionization.
In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the e
We demonstrate a new method for measuring the escape fraction of ionizing photons using Hubble Space Telescope imaging of resolved stars in NGC 4214, a local analog of high-redshift starburst galaxies that are thought to be responsible for cosmic rei
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th
We calculate the hydrogen and helium-ionizing radiation escaping star-forming molecular clouds, as a function of the star cluster mass and compactness, using a set of high-resolution radiation-magneto-hydrodynamic simulations of star formation in sel
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions,