ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically-Thin Spatially-Resolved Mg II Emission Maps the Escape of Ionizing Photons

82   0   0.0 ( 0 )
 نشر من قبل John Chisholm
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early star-forming galaxies produced copious ionizing photons. A fraction of these photons escaped gas within galaxies to reionize the entire Universe. This escape fraction is crucial for determining how the Universe became reionized, but the neutral intergalactic medium precludes direct measurement of the escape fraction at high-redshifts. Indirect estimates of the escape fraction must describe how the Universe was reionized. Here, we present new Keck Cosmic Web Imager spatially-resolved spectroscopy of the resonant Mg II 2800 doublet from a redshift 0.36 galaxy, J1503+3644, with a previously observed escape fraction of 6%. The Mg II emission has a similar spatial extent as the stellar continuum, and each of the Mg II doublet lines are well-fit by single Gaussians. The Mg II is optically thin. The intrinsic flux ratio of the red and blue Mg II emission line doublet, $R = F_{2796}/F_{2803}$, is set by atomic physics to be two, but Mg$^+$ gas along the line of sight decreases $R$ proportional to the Mg II optical depth. Combined with the metallicity, $R$ estimates the neutral gas column density. The observed $R$ ranges across the galaxy from 0.8-2.7, implying a factor of 2 spatial variation of the relative escape fraction. All of the ionizing photons that escape J1503+3644 pass through regions of high $R$. We combine the Mg II emission and dust attenuation to accurately estimate the absolute escape fractions for ten local Lyman Continuum emitting galaxies and suggest that Mg II can predict escape fraction within the Epoch of Reionization.



قيم البحث

اقرأ أيضاً

In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the e scape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $sim 40 ^circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $sim [1- cos (1 , {rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angle-averaged escape fraction on the mid-plane disk gas density (in the range $n_0=0.15-50$ cm $^{-3}$) and the disk scale height (between $z_0=10-600$ pc). We find that the escape fraction is related to the disk parameters (the mid-plane disk density and scale height) roughly so that $f_{rm esc}^alpha n_0^2 z_0^3$ (with $alphaapprox 2.2$) is a constant. For disks with a given WNM temperature, massive disks have lower escape fraction than low mass galaxies. For Milky Way ISM parameters, we find $f_{rm esc}sim 5%$, and it increases to $approx 10%$ for a galaxy ten times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the universe.
We demonstrate a new method for measuring the escape fraction of ionizing photons using Hubble Space Telescope imaging of resolved stars in NGC 4214, a local analog of high-redshift starburst galaxies that are thought to be responsible for cosmic rei onization. Specifically, we forward model the UV through near-IR spectral energy distributions of $sim$83,000 resolved stars to infer their individual ionizing flux outputs. We constrain the local escape fraction by comparing the number of ionizing photons produced by stars to the number that are either absorbed by dust or consumed by ionizing the surrounding neutral hydrogen in individual star-forming regions. We find substantial spatial variation in the escape fraction (0-40%). Integrating over the entire galaxy yields a global escape fraction of 25% (+16%/-15%). This value is much higher than previous escape fractions of zero reported for this galaxy. We discuss sources of this apparent tension, and demonstrate that the viewing angle and the 3D ISM geometric effects are the cause. If we assume the NGC 4214 has no internal dust, like many high-redshift galaxies, we find an escape fraction of 59% (an upper-limit for NGC 4214). This is the first non-zero escape fraction measurement for UV-faint (M$_{rm FUV}$ = -15.9) galaxies at any redshift, and supports the idea that starburst UV-faint dwarf galaxies can provide a sufficient amount of ionizing photons to the intergalactic medium.
149 - Ji-hoon Kim 2012
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th e radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.
We calculate the hydrogen and helium-ionizing radiation escaping star-forming molecular clouds, as a function of the star cluster mass and compactness, using a set of high-resolution radiation-magneto-hydrodynamic simulations of star formation in sel f-gravitating, turbulent molecular clouds. In these simulations, presented in He, Ricotti and Geen (2019), the formation of individual massive stars are well resolved, and their UV radiation feedback and lifetime on the main sequence are modeled self-consistently. We find that the escape fraction of ionizing radiation from molecular clouds, $langle f_{rm esc}^{scriptscriptstyle rm MC}rangle$, decreases with increasing mass of the star cluster and with decreasing compactness. Molecular clouds with densities typically found in the local Universe have negligible $langle f_{rm esc}^{scriptscriptstyle rm MC}rangle$, ranging between $0.5%$ to $5%$. Ten times denser molecular clouds have $langle f_{rm esc}^{scriptscriptstyle rm MC}rangle approx 10%-20%$, while $100times$ denser clouds, which produce globular cluster progenitors, have $langle f_{rm esc}^{scriptscriptstyle rm MC}rangle approx 20%-60%$. We find that $langle f_{rm esc}^{scriptscriptstyle rm MC}rangle$ increases with decreasing gas metallicity, even when ignoring dust extinction, due to stronger radiation feedback. However, the total number of escaping ionizing photons decreases with decreasing metallicity because the star formation efficiency is reduced. We conclude that the sources of reionization at $z>6$ must have been very compact star clusters forming in molecular clouds about $100times$ denser than in todays Universe, which leads to a significant production of old globular clusters progenitors.
111 - Ji-hoon Kim 2012
We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution, and because H-alpha traces hot gas around star-forming regions and is displaced from the molecular hydrogen peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via stellar feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا