ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle generations in $mathbb{R}^{0|18}$ dust gravity

43   0   0.0 ( 0 )
 نشر من قبل Robert Pfeifer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $mathbb{R}^{0|18}$ dust gravity model contains analogues to the particle spectrum and interactions of the Standard Model and gravity, but with only four tunable parameters. As the structure of this model is highly constrained, predictive relationships between its counterparts to the constants of the Standard Model may be obtained. In this paper, the model values for the masses of the tau, the $W$ and $Z$ bosons, and a Higgs-like scalar boson are calculated as functions of $alpha$, $m_e$, and $m_mu$, with no free fitting parameters. They are shown to be $1776.867(1)~mathrm{MeV}/c^2$, $80.3786(3)~mathrm{GeV}/c^2$, $91.1877(4)~mathrm{GeV}/c^2$, and $125.16(1)~mathrm{GeV}/c^2$ respectively, all within $0.5,sigma$ or better of the corresponding observed values of $1776.86(12)~mathrm{MeV}/c^2$, $80.379(12)~mathrm{GeV}/c^2$, $91.1876(21)~mathrm{GeV}/c^2$, and $125.10(14)~mathrm{GeV}/c^2$. This result suggests the existence of a unifying relationship between lepton generations and the electroweak mass scale, which is proposed to arise from preon interactions mediated by the strong nuclear force.

قيم البحث

اقرأ أيضاً

This article describes a single species of non-interacting massless dust on $mathbb{R}^{0|18}$, whose behaviour in the low-energy limit is equivalent to an interacting family of massive particles resembling the Standard Model plus WIMPs on a curved 3 +1D space--time manifold (though with some liberties taken with gravity). The coupling between mass and curvature is not strictly equivalent to general relativity, but reproduces the usual metrics for large uncharged spherically symmetric sources at reasonable distances from the event horizon. Tunable parameters may be chosen so that electroweak particle masses and force couplings calculated to tree level lie within a few percent of their Standard Model values. This model is consequently of interest as a novel approximation to the Standard Model and gravitation. Extensive new physics, including a tripartite coloured preon substructure for fermions, is predicted at energies beyond the strong nuclear scale.
Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einstein s field equations in $f(R,T)$ gravity are derived. To obtain the exact wormhole solutions, the relations $p_t=omegarho$ and $p_r=sinh(r)p_t$, where $rho$ is the energy density, $p_r$ is the radial pressure and $p_t$ is the tangential pressure, are used. Other than these relations, two forms of shape function defined in literature are used, and their suitability is examined by exploring the regions of validity of null, weak, strong and dominant energy conditions . Consequently, the radius of the throat or the spherical region, with satisfied energy conditions, is determined and the presence of exotic matter is minimized.
Anisotropic cosmological models are constructed in $f(R,T)$ gravity theory to investigate the dynamics of universe concerning the late time cosmic acceleration. Using a more general and simple approach, the effect of the coupling constant and anisotr opy on the cosmic dynamics have been investigated. Cosmic anisotropy is found affect substantially the cosmic dynamics.
The $f(R,T)$ theory of gravitation is an extended theory of gravitation in which the gravitational action contains both the Ricci scalar $R$ and the trace of energy momentum tensor $T$ and hence the cosmological models based on $f(R,T)$ gravity are e ligible to describing late time acceleration of present universe. In this paper, we investigate an accelerating model of flat universe with linearly varying deceleration parameter (LVDP). We apply the linearly time varying law for deceleration parameters that generates a model of transitioning universe from early decelerating phase to current accelerating phase. We carry out the state-finder and Om(z) analysis, and obtain that LVDP model have consistency with astrophysical observations. We also discuss profoundly the violation of energy-momentum conservation law in $f(R,T)$ gravity and dynamical behavior of the model.
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accompl ishes all necessary conditions for traversable and asymptotically flat wormholes. The obtained wormhole solutions are analyzed from the energy conditions for different values of $lambda$. It has been observed that our proposed shape function for the linear form of $f(R,T)$ gravity, represents the existence of exotic matter and non-exotic matter. Moreover, for $lambda=0$ i.e. for the general relativity case, the existence of exotic matter for the wormhole geometry has been confirmed. Further, the behaviour of the radial state parameter $omega_{r}$, the tangential state parameter $omega_{t}$ and the anisotropy parameter $triangle$ describing the geometry of the universe, has been presented for different values of $lambda$ chosen in $[-100,100]$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا