ﻻ يوجد ملخص باللغة العربية
The $mathbb{R}^{0|18}$ dust gravity model contains analogues to the particle spectrum and interactions of the Standard Model and gravity, but with only four tunable parameters. As the structure of this model is highly constrained, predictive relationships between its counterparts to the constants of the Standard Model may be obtained. In this paper, the model values for the masses of the tau, the $W$ and $Z$ bosons, and a Higgs-like scalar boson are calculated as functions of $alpha$, $m_e$, and $m_mu$, with no free fitting parameters. They are shown to be $1776.867(1)~mathrm{MeV}/c^2$, $80.3786(3)~mathrm{GeV}/c^2$, $91.1877(4)~mathrm{GeV}/c^2$, and $125.16(1)~mathrm{GeV}/c^2$ respectively, all within $0.5,sigma$ or better of the corresponding observed values of $1776.86(12)~mathrm{MeV}/c^2$, $80.379(12)~mathrm{GeV}/c^2$, $91.1876(21)~mathrm{GeV}/c^2$, and $125.10(14)~mathrm{GeV}/c^2$. This result suggests the existence of a unifying relationship between lepton generations and the electroweak mass scale, which is proposed to arise from preon interactions mediated by the strong nuclear force.
This article describes a single species of non-interacting massless dust on $mathbb{R}^{0|18}$, whose behaviour in the low-energy limit is equivalent to an interacting family of massive particles resembling the Standard Model plus WIMPs on a curved 3
Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einstein
Anisotropic cosmological models are constructed in $f(R,T)$ gravity theory to investigate the dynamics of universe concerning the late time cosmic acceleration. Using a more general and simple approach, the effect of the coupling constant and anisotr
The $f(R,T)$ theory of gravitation is an extended theory of gravitation in which the gravitational action contains both the Ricci scalar $R$ and the trace of energy momentum tensor $T$ and hence the cosmological models based on $f(R,T)$ gravity are e
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accompl