ترغب بنشر مسار تعليمي؟ اضغط هنا

Bulk and element specific magnetism of the medium and high entropy Cantor-Wu alloys

89   0   0.0 ( 0 )
 نشر من قبل David Billington
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic Compton scattering, x-ray magnetic circular dichroism spectroscopy and bulk magnetometry measurements are performed on a set of medium (NiFeCo and NiFeCoCr) and high (NiFeCoCrPd and NiFeCoCrMn) entropy Cantor-Wu alloys. The bulk spin momentum densities determined by magnetic Compton scattering are remarkably isotropic, and this is a consequence of the smearing of the electronic structure by disorder scattering of the electron quasiparticles. Non-zero x-ray magnetic circular dichroism signals are observed for every element in every alloy indicating differences in the populations of the majority and minority spin states implying finite magnetic moments. When Cr is included in the solid solution, the Cr spin moment is unambiguously antiparallel to the total magnetic moment, while a vanishingly small magnetic moment is observed for Mn, despite calculations indicating a large moment. Some significant discrepancies are observed between the experimental bulk and surface magnetic moments. Despite the lack of quantitative agreement, the element specific surface magnetic moments seem to be qualitatively reasonable.



قيم البحث

اقرأ أيضاً

347 - J. Bertinshaw , S. Bruck , D. Lott 2014
Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have us ed polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.
106 - Y. Tong , G. Velisa , T. Yang 2017
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications , in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
Disorder can have a dominating influence on correlated and quantum materials leading to novel behaviors which have no clean limit counterparts. In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, an d spin dynamics, but broad tunability of these responses and a deeper understanding of strong limit disorder is lacking. In this work, we demonstrate that high entropy oxides present an unexplored route to designing quantum materials in which the presence of strong local compositional disorder hosted on a positionally ordered lattice can be used to generate highly tunable emergent magnetic behavior--from macroscopically ordered states to frustration-driven dynamic spin interactions. Single crystal La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films are used as a structurally uniform model system hosting a magnetic sublattice with massive microstate disorder in the form of site-to-site spin and exchange type inhomogeneity. A classical Heisenberg model is found to be sufficient to describe how compositionally disordered systems can paradoxically host long-range magnetic uniformity and demonstrates that balancing the populating elements based on their discrete quantum parameters can be used to give continuous control over ordering types and critical temperatures. Theory-guided experiments show that composite exchange values derived from the complex mix of microstate interactions can be used to design the required compositional parameters for a desired response. These predicted materials are synthesized and found to possess an incipient quantum critical point when magnetic ordering types are designed to be in direct competition; this leads to highly controllable exchange bias sensitivity in the monolithic single crystal films previously accessible only in intentionally designed bilayer heterojunctions.
A large swath of strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition m etal based, strongly correlated systems that are revealed by suppressed, fragile magnetism or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.
A low-temperature magnetism was revealed in a series of sigma-Fe(100-x)Mo(x) alloys (x=45-53). Its characterization has been done using vibrating sample magnetometry, Mossbauer spectroscopy, and ac magnetic susceptibility. The magnetic ordering tempe rature was determined to lie in the range of 46 K for x=45 and 22K for x=53, and the ground magnetic state was found to be typical of a spin-glass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا