ترغب بنشر مسار تعليمي؟ اضغط هنا

Intrinsic piezoelectricity in monolayer $mathrm{XSi_2N_4}$ (X=Ti, Zr, Hf, Cr, Mo and W)

90   0   0.0 ( 0 )
 نشر من قبل San-Dong Guo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motived by experimentally synthesized $mathrm{MoSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020})), the intrinsic piezoelectricity in monolayer $mathrm{XSi_2N_4}$ (X=Ti, Zr, Hf, Cr, Mo and W) are studied by density functional theory (DFT). Among the six monolayers, the $mathrm{CrSi_2N_4}$ has the best piezoelectric strain coefficient $d_{11}$ of 1.24 pm/V, and the second is 1.15 pm/V for $mathrm{MoSi_2N_4}$. Taking $mathrm{MoSi_2N_4}$ as a example, strain engineering is applied to improve $d_{11}$. It is found that tensile biaxial strain can enhance $d_{11}$ of $mathrm{MoSi_2N_4}$, and the $d_{11}$ at 4% can improve by 107% with respect to unstrained one. By replacing the N by P or As in $mathrm{MoSi_2N_4}$, the $d_{11}$ can be raise substantially. For $mathrm{MoSi_2P_4}$ and $mathrm{MoSi_2As_4}$, the $d_{11}$ is as high as 4.93 pm/V and 6.23 pm/V, which is mainly due to smaller $C_{11}-C_{12}$ and very small minus or positive ionic contribution to piezoelectric stress coefficient $e_{11}$ with respect to $mathrm{MoSi_2N_4}$. The discovery of this piezoelectricity in monolayer $mathrm{XSi_2N_4}$ enables active sensing, actuating and new electronic components for nanoscale devices, and is recommended for experimental exploration.



قيم البحث

اقرأ أيضاً

The recently experimentally synthesized monolayer $mathrm{MoSi_2N_4}$ and $mathrm{WSi_2N_4}$ (textcolor[rgb]{0.00,0.00,1.00}{Science 369, 670-674 (2020})) lack inversion symmetry, which allows them to become piezoelectric. In this work, based on ab i nitio calculations, we report structure effect on intrinsic piezoelectricity in septuple-atomic-layer $mathrm{MSi_2N_4}$ (M=Mo and W), and six structures ($alpha_i$ ($i$=1 to 6)) are considered with the same space group.It is found that $mathrm{MSi_2N_4}$ (M=Mo and W) with $alpha_i$ ($i$=1 to 6) all are indirect band gap semiconductors. Calculated results show that $mathrm{MoSi_2N_4}$ and $mathrm{WSi_2N_4}$ monolayers have the same structural dependence on piezoelectric strain and stress coefficients ($d_{11}$ and $e_{11}$), together with the ionic and electronic contributions to $e_{11}$.Finally, we investigate the intrinsic piezoelectricity of monolayer $mathrm{MA_2Z_4}$ (M=Cr, Mo and W; A=Si and Ge; Z=N and P) with $alpha_1$ and $alpha_2$ phases expect $mathrm{CrGe_2N_4}$, because they all are semiconductors and their enthalpies of formation between $alpha_1$ and $alpha_2$ phases are very close. The most important result is that monolayer $mathrm{MA_2Z_4}$ containing P atom have more stronger piezoelectric polarization than one including N atom. The largest $d_{11}$ among $mathrm{MA_2N_4}$ materials is 1.85 pm/V, which is close to the smallest $d_{11}$ of 1.65 pm/V in $mathrm{MA_2P_4}$ monolayers. For $mathrm{MA_2P_4}$, the largest $d_{11}$ is up to 6.12 pm/V. Among the 22 monolayers, $alpha_1$-$mathrm{CrSi_2P_4}$, $alpha_1$-$mathrm{MoSi_2P_4}$, $alpha_1$-$mathrm{CrGe_2P_4}$, $alpha_1$-$mathrm{MoGe_2P_4}$ and $alpha_2$-$mathrm{CrGe_2P_4}$ have large $d_{11}$, which are greater than or close to 5 pm/V, a typical value for bulk piezoelectric materials.
The family of two-dimensional transition metal carbides, so called MXenes, has recently found new members with ordered double transition metals M$_2$M$$C$_2$, where M$$ and M$$ stand for transition metals. Here, using a set of first-principles calcul ations, we demonstrate that some of the newly added members, oxide M$_2$M$$C$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) MXenes, are topological insulators. The nontrivial topological states of the predicted MXenes are revealed by the $Z_2$ index, which is evaluated from the parities of the occupied bands below the Fermi energy at time reversal invariant momenta, and also by the presence of the edge states. The predicted M$_2$M$$C$_2$O$_2$ MXenes show nontrivial gaps in the range of 0.041 -- 0.285 eV within the generalized gradient approximation and 0.119 -- 0.409 eV within the hybrid functional. The band gaps are induced by the spin-orbit coupling within the degenerate states with $d_{x^2-y^2}$ and $d_{xy}$ characters of M$$ and M$$, while the band inversion occurs at the $Gamma$ point among the degenerate $d_{x^2-y^2}$/$d_{xy}$ orbitals and a non-degenerate $d_{3z^2-r^2}$ orbital, which is driven by the hybridization of the neighboring orbitals. The phonon dispersion calculations find that the predicted topological insulators are structurally stable. The predicted W-based MXenes with large band gaps might be suitable candidates for many topological applications at room temperature. In addition, we study the electronic structures of thicker ordered double transition metals M$_2$M$_2$C$_3$O$_2$ (M$$= Mo, W; M$$= Ti, Zr, Hf) and find that they are nontrivial topological semimetals.
We have investigated the plastic deformation properties of non-equiatomic single phase Zr-Nb-Ti-Ta-Hf high-entropy alloys from room temperature up to 300 {deg}C. Uniaxial deformation tests at a constant strain rate of 10$^{-4}$ s$^{-1}$ were performe d including incremental tests such as stress-relaxations, strain-rate- and temperature changes in order to determine the thermodynamic activation parameters of the deformation process. The microstructure of deformed samples was characterized by transmission electron microscopy. The strength of the investigated Zr-Nb-Ti-Ta-Hf phase is not as high as the values frequently reported for high-entropy alloys in other systems. We find an activation enthalpy of about 1 eV and a stress dependent activation volume between 0.5 and 2 nm$^3$. The measurement of the activation parameters at higher temperatures is affected by structural changes evolving in the material during plastic deformation.
A two-dimensional (2D) material with piezoelectricity, topological and ferromagnetic (FM) orders, namely 2D piezoelectric quantum anomalous hall insulator (PQAHI), may open new opportunities to realize novel physics and applications. Here, by first-p rinciples calculations, a family of 2D Janus monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) with dynamic, mechanical and thermal stabilities is predict to be room-temperature PQAHI. At the absence of spin-orbit coupling (SOC), monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) is a half Dirac semimetal state. When the SOC is included, these monolayers become quantum anomalous hall (QAH) states with sizable gaps (more than two hundred meV) and two chiral edge modes (Chern number C=2). It is also found that monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) possesses robust QAH states against biaxial strain. By symmetry analysis, it is found that only out-of-plane piezoelectric response can be induced by a uniaxial strain in the basal plane. The calculated out-of-plane $d_{31}$ of $mathrm{Fe_2ICl}$ ($mathrm{Fe_2IBr}$) is 0.467 pm/V (0.384 pm/V), which is higher than or comparable with ones of other 2D known materials. Meanwhile, using Monte Carlo (MC) simulations, the Curie temperature $T_C$ is estimated to be 429/403 K for monolayer $mathrm{Fe_2ICl}$/$mathrm{Fe_2IBr}$ at FM ground state, which is above room temperature. Finally, the interplay of electronic correlations with nontrivial band topology is studied to confirm the robustness of QAH state. The combination of piezoelectricity, topological and FM orders makes monolayer $mathrm{Fe_2IX}$ (X=Cl and Br) become a potential platform for multi-functional spintronic applications with large gap and high $T_C$. Our works provide possibility to use the piezotronic effect to control QAH effects, and can stimulate further experimental works.
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of $mathrm{VSi_2P_4}$, and it spans a wide range of properties upon the increasing strain from ferromagnetic metal (FMM) to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS $mathrm{VSi_2P_4}$ with strain range of 0% to 4%. The calculated piezoelectric strain coefficients $d_{11}$ for 1%, 2% and 3% strains are 4.61 pm/V, 4.94 pm/V and 5.27 pm/V, respectively, which are greater than or close to a typical value of 5 pm/V for bulk piezoelectric materials. Finally, similar to $mathrm{VSi_2P_4}$, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the $mathrm{VSi_2N_4}$ monolayer. Our works show that $mathrm{VSi_2P_4}$ in FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا