ترغب بنشر مسار تعليمي؟ اضغط هنا

Cause and Kinematics of a Jet-Like CME

105   0   0.0 ( 0 )
 نشر من قبل Reetika Joshi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we present the multi-viewpoint and multi-wavelength analysis of an atypical solar jet based on the data from Solar Dynamics Observatory, SOlar, and Heliospheric Observatory, and Solar TErrestrial RElations Observatory. It is usually believed that the coronal mass ejections (CMEs) are developed from the large scale solar eruptions in the lower atmosphere. However, the kinematical and spatial evolution of the jet on 2013 April 28 guide us that the jet was clearly associated with a narrow CME having a width of approx 25 degrees with a speed of 450 km/s. To better understand the link between the jet and the CME, we did the coronal potential field extrapolation from the line of sight magnetogram of the AR. The extrapolations present that the jet eruption follows exactly the same path of the open magnetic field lines from the source region which provides the route for the jet material to escape from the solar surface towards the outer corona.



قيم البحث

اقرأ أيضاً

We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and f ind that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; ~1200 km/s) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; ~700 km/s). By applying a drag-based model we are able to reproduce the kinematical profile of CME2 suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.
To gain a more complete understanding of the dynamics of the GK Per (1901) remnant faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulo sity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the MES instrument at the San Pedro Martir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the central binary system is responsible for the bipolarity of the planetary nebula and the cylindrical nova shell. The gradual planetary nebula ejecta versus sudden nova ejecta is the reason for the different degrees of bipolarity. We propose that the jet feature is an illuminated lobe of the fossil planetary nebula that surrounds the nova shell.
Coronal mass ejections (CMEs) and coronal jets are two types of common solar eruptive phenomena, which often independently happen at different spatial scales. In this work, we present a stereoscopic observation of a large-scale CME flux rope arising from an unwinding blowout jet in a multipolar complex magnetic system. Based on a multi-band observational analysis, we find that this whole event starts with a small filament whose eruption occurs at a coronal geyser site after a series of homologous jets. Aided by magnetic field extrapolations, it reveals that the coronal geyser site forms above an elongate opposite-polarity interface, where the emergence-driven photospheric flux cancellation and repetitive reconnection are responsible for those preceding recurrent jets and also contribute to the ultimate filament destabilization. By interacting with overlying fields, the erupting filament breaks one of its legs and results in an unwinding blowout jet. Our estimation suggests that around 1.4$-$2.0 turns of twist release in its jet spire. This prominent twist transport in jet spire rapidly creates a newborn larger-scale flux rope from the jet base to a remote site. Soon after its formation, this large-scale flux rope erupts towards the outer coronae causing an Earth-directed CME. In its source region, two sets of distinct post-flare loops form in succession, indicating this eruption involves two-stage of flare magnetic reconnection. This work not only reveals a real magnetic coupling process between different eruptive activities but provides a new hint for understanding the creation of large-scale CME flux ropes during the solar eruption.
Some metal-poor stars have abundance patterns which are midway between the slow (s) and rapid (r) neutron capture processes. We show that the helium shell of a fast rotating massive star experiencing a jet-like explosion undergoes two efficient neutr on capture processes: one during stellar evolution and one during the explosion. It eventually provides a material whose chemical composition is midway between the s- and r-process. A low metallicity 40~$M_{odot}$ model with an initial rotational velocity of $sim 700$~km~s$^{-1}$ was computed from birth to pre-supernova with a nuclear network following the slow neutron capture process. A 2D hydrodynamic relativistic code was used to model a $E = 10^{52}$~erg relativistic jet-like explosion hitting the stellar mantle. The jet-induced nucleosynthesis was calculated in post-processing with a network of 1812 nuclei. During the stars life, heavy elements from $30 lesssim Z lesssim 82$ are produced thanks to an efficient s-process, which is boosted by rotation. At the end of evolution, the helium shell is largely enriched in trans-iron elements and in (unburnt) $^{22}$Ne, whose abundance is $sim 20$ times higher than in a non-rotating model. During the explosion, the jet heats the helium shell up to $sim 1.5$ GK. It efficiently activates ($alpha,n$) reactions, such as $^{22}$Ne($alpha,n$), and leads to a strong n-process with neutron densities of $sim 10^{19} - 10^{20}$~cm$^{-3}$ during $0.1$~second. This has the effect of shifting the s-process pattern towards heavier elements (e.g. Eu). The resulting chemical pattern is consistent with the abundances of the carbon-enhanced metal-poor r/s star CS29528-028, provided the ejecta of the jet model is not homogeneously mixed. This is a new astrophysical site which can explain at least some of the metal-poor stars showing abundance patterns midway between the s- and r-process.
We present results from four convectively-driven stellar dynamo simulations in spherical wedge geometry. All of these simulations produce cyclic and migrating mean magnetic fields. Through detailed comparisons we show that the migration direction can be explained by an $alphaOmega$ dynamo wave following the Parker--Yoshimura rule. We conclude that the equatorward migration in this and previous work is due to a positive (negative) $alpha$ effect in the northern (southern) hemisphere and a negative radial gradient of $Omega$ outside the inner tangent cylinder of these models. This idea is supported by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward propagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا