ترغب بنشر مسار تعليمي؟ اضغط هنا

Vanadium Abundance Derivations in 255 Metal-poor Stars

228   0   0.0 ( 0 )
 نشر من قبل Xiaowei Ou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present vanadium (V) abundances for 255 metal-poor stars, derived from high-resolution optical spectra from the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coud{e} Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We use updated V I and V II atomic transition data from recent laboratory studies, and we increase the number of lines examined (from 1 to 4 lines of V I, and from 2 to 7 lines of V II). As a result, we reduce the V abundance uncertainties for most stars by more than 20% and expand the number of stars with V detections from 204 to 255. In the metallicity range $-$4.0 $<$ [Fe/H] $< -$1.0, we calculate the mean ratios [V I/Fe I]$ = -0.10 pm 0.01 (sigma = 0.16)$ from 128 stars with $geq$ 2 V I lines detected, [V II/Fe II] $= +0.13 pm 0.01 (sigma = 0.16)$ from 220 stars with $geq$ 2 V II lines detected, and [V II/V I] $= +0.25 pm 0.01 (sigma = 0.15)$ from 119 stars. We suspect this offset is due to non-LTE effects, and we recommend using [V II/Fe II], which is enhanced relative to the solar ratio, as a better representation of [V/Fe]. We provide more extensive evidence for abundance correlations detected previously among scandium, titanium, and vanadium, and we identify no systematic effects in the analysis that can explain these correlations.



قيم البحث

اقرأ أيضاً

Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. Recent observations of the r-process-enriched star BD +17 3248 include new abundance determinations for the neutron-capture elements Cd I (Z=48), Lu II (Z = 71) and Os II (Z = 76), the first detections of these elements in metal-poor r-process-enriched halo stars. Combining these and previous observations, we have now detected 32 n-capture elements in BD +17 3248. This is the most of any metal-poor halo star to date. For the most r-process-rich (i.e. [Eu/Fe] ~= 1) halo stars, such as CS 22892-052 and BD +17 3248, abundance comparisons show that the heaviest stable n-capture elements (i.e., Ba and above, Z >= 56) are consistent with a scaled solar system r-process abundance distribution. The lighter n-capture element abundances in these stars, however, do not conform to the solar pattern. These comparisons, as well as recent observations of heavy elements in metal-poor globular clusters, suggest the possibility of multiple synthesis mechanisms for the n-capture elements. The heavy element abundance patterns in most metal-poor halo stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment indicates that r-process enrichment in the early Galaxy is common.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the thr ee stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
After the Big Bang nucleosynthesis, the first heavy element enrichment in the Universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abun dance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well-reproduce individually the abundance patterns of 48 such metal-poor stars as [Fe/H] $mathrel{rlap{lower 4pt hbox{$sim$}}raise 1pt hbox {$<$}}-3.5$. We then derive relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C+N)/Fe] and [(C+N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: The distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the resent day SNe but shows an extended tail down to $sim10^{-2}-10^{-5}M_odot$, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present day stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early Universe.
140 - Monique Spite 2012
(Abridged) Extremely metal-poor stars contain the fossil records of the chemical composition of the early Galaxy. The NLTE profiles of the calcium lines were computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI. With our new model atom we are able to reconcile the abundance of Ca deduced from the Ca I and Ca II lines in Procyon. -We find that [Ca/Fe] = 0.50 $pm$ 0.09 in the early Galaxy, a value slightly higher than the previous LTE estimations. -The scatter of the ratios [X/Ca] is generally smaller than the scatter of the ratio [X/Mg] where X is a light metal (O, Na, Mg, Al, S, and K) with the exception of Al. These scatters cannot be explained by error of measurements, except for oxygen. Surprisingly, the scatter of [X/Fe] is always equal to, or even smaller than, the scatter around the mean value of [X/Ca]. -We note that at low metallicity, the wavelength of the Ca I resonance line is shifted relative to the (weaker) subordinate lines, a signature of the effect of convection. -The Ca abundance deduced from the Ca I resonance line (422.7 nm) is found to be systematically smaller at very low metallicity, than the abundance deduced from the subordinate lines.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا