ﻻ يوجد ملخص باللغة العربية
Non-local operation is widely explored to model the long-range dependencies. However, the redundant computation in this operation leads to a prohibitive complexity. In this paper, we present a Representative Graph (RepGraph) layer to dynamically sample a few representative features, which dramatically reduces redundancy. Instead of propagating the messages from all positions, our RepGraph layer computes the response of one node merely with a few representative nodes. The locations of representative nodes come from a learned spatial offset matrix. The RepGraph layer is flexible to integrate into many visual architectures and combine with other operations. With the application of semantic segmentation, without any bells and whistles, our RepGraph network can compete or perform favourably against the state-of-the-art methods on three challenging benchmarks: ADE20K, Cityscapes, and PASCAL-Context datasets. In the task of object detection, our RepGraph layer can also improve the performance on the COCO dataset compared to the non-local operation. Code is available at https://git.io/RepGraph.
In this paper, we propose a novel tensor graph convolutional neural network (TGCNN) to conduct convolution on factorizable graphs, for which here two types of problems are focused, one is sequential dynamic graphs and the other is cross-attribute gra
Interpreting the decision logic behind effective deep convolutional neural networks (CNN) on images complements the success of deep learning models. However, the existing methods can only interpret some specific decision logic on individual or a smal
An effective understanding of the contextual environment and accurate motion forecasting of surrounding agents is crucial for the development of autonomous vehicles and social mobile robots. This task is challenging since the behavior of an autonomou
Understanding how certain brain regions relate to a specific neurological disorder has been an important area of neuroimaging research. A promising approach to identify the salient regions is using Graph Neural Networks (GNNs), which can be used to a
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different