ﻻ يوجد ملخص باللغة العربية
In this paper, we study the sizes of quasar proximity zones with synthetic quasar absorption spectra obtained by post-processing a Cosmic Reionization On Computers (CROC) simulation. CROC simulations have both relatively large box sizes and high spacial resolution, allowing us to resolve Lyman limit systems, which are crucial for modeling the quasar absorption spectra. We find that before reionization most quasar proximity zone sizes grow steadily for $sim 10$ Myr, while after reionization they grow rapidly but only for $sim 0.1$ Myr. We also find a slow growth of $R_{rm obs}$ with decreasing turn-on redshift. In addition, we find that $sim 1-2%$ of old quasars ($30$ Myr old) display extremely small proximity zone sizes ($<1$ proper Mpc), of which the vast majority are due to the occurrence of a damped Ly$alpha$ absorber (DLA) or a Lyman limit system (LLS) along the line of sight. These DLAs and LLSs are contaminated with metal, which offers a way to distinguish them from the normal proximity zones of young quasars.
We calculate the distribution of HI within 750 proper kpc/h of a quasar, Lbol = 1.62e13 Lsun, powered by an SMBH, Mbh = 4.47e8 Msun, at z = 3. Our numerical model includes a cosmological hydrodynamic simulation that tracks the self consistent growth
The lifetime of quasars can be estimated by means of their proximity zone sizes, which are regions of enhanced flux bluewards of the Lyman-$alpha$ emission line observed in the rest-frame UV spectra of high-redshift quasars, because the intergalactic
We present a study of galaxy sizes in the local Universe as a function of galaxy environment, comparing clusters and the general field. Galaxies with radii and masses comparable to high-z massive and compact galaxies represent 4.4% of all galaxies mo
Quasar microlensing effects make it possible to measure the accretion disc sizes around distant supermassive black holes that are still well beyond the spatial resolution of contemporary instrumentation. The sizes measured with this technique appear
We propose and apply a new test of Einsteins Equivalence Principle (EEP) based on the gravitational redshift induced by the central super massive black hole of quasars in the surrounding accretion disk. Specifically, we compare the observed gravitati