ﻻ يوجد ملخص باللغة العربية
While a linear growth behavior is one of the fingerprints of textbook atomic layer deposition processes, the growth often deviates from that behavior in the initial regime, i.e. the first few cycles of a process. To properly understand the growth behavior in the initial regime is particularly important for applications that rely on the exact thickness of very thin films. The determination of the thicknesses of the initial regime, however, often requires special equipment and techniques that are not always available. We propose a thickness determination method that is based on X-ray reflectivity (XRR) measurements on double layer structures, i.e. substrate/base layer/top layer. XRR is a standard thin film characterization method. Utilizing the inherent properties of fast Fourier transformation in combination with a multi-Gaussian fitting routine permits the determination of thicknesses down to $t approx 2$ nm. We evaluate the boundaries of our model, which are given by the separation and full width at half maximum of the individual Gaussians. Finally, we compare our results from two layer stacks with data from X-ray fluorescence spectroscopy, which is a standard method for measuring ultra thin films.
Atomic layer deposition (ALD) provides uniform and conformal thin films that are of interest for a range of applications. To better understand the properties of amorphous ALD films, we need improved understanding of their local atomic structure. Prev
We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resis
The influence of the deposition pressure PO2 and substrate temperature TS during the growth of Bi2FeCrO6 thin films grown by pulsed laser deposition has been investigated. It is found that the high volatility of Bi makes the deposition very difficult
We report the growth, structural and magnetic properties of the less studied Eu-oxide phase, Eu$_3$O$_4$, thin films grown on a Si/SiO$_2$ substrate and Si/SiO$_2$/graphene using molecular beam epitaxy. The X-ray diffraction scans show that highly-te
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth