ترغب بنشر مسار تعليمي؟ اضغط هنا

A Synthetic Network Generator for Covert Network Analytics

302   0   0.0 ( 0 )
 نشر من قبل Amr Elsisy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study social networks and focus on covert (also known as hidden) networks, such as terrorist or criminal networks. Their structures, memberships and activities are illegal. Thus, data about covert networks is often incomplete and partially incorrect, making interpreting structures and activities of such networks challenging. For legal reasons, real data about active covert networks is inaccessible to researchers. To address these challenges, we introduce here a network generator for synthetic networks that are statistically similar to a real network but void of personal information about its members. The generator uses statistical data about a real or imagined covert organization network. It generates randomized instances of the Stochastic Block model of the network groups but preserves this network organizational structure. The direct use of such anonymized networks is for training on them the research and analytical tools for finding structure and dynamics of covert networks. Since these synthetic networks differ in their sets of edges and communities, they can be used as a new source for network analytics. First, they provide alternative interpretations of the data about the original network. The distribution of probabilities for these alternative interpretations enables new network analytics. The analysts can find community structures which are frequent, therefore stable under perturbations. They may also analyze how the stability changes with the strength of perturbation. For covert networks, the analysts can quantify statistically expected outcomes of interdiction. This kind of analytics applies to all complex network in which the data are incomplete or partially incorrect.



قيم البحث

اقرأ أيضاً

A common network analysis task is comparison of two networks to identify unique characteristics in one network with respect to the other. For example, when comparing protein interaction networks derived from normal and cancer tissues, one essential t ask is to discover protein-protein interactions unique to cancer tissues. However, this task is challenging when the networks contain complex structural (and semantic) relations. To address this problem, we design ContraNA, a visual analytics framework leveraging both the power of machine learning for uncovering unique characteristics in networks and also the effectiveness of visualization for understanding such uniqueness. The basis of ContraNA is cNRL, which integrates two machine learning schemes, network representation learning (NRL) and contrastive learning (CL), to generate a low-dimensional embedding that reveals the uniqueness of one network when compared to another. ContraNA provides an interactive visualization interface to help analyze the uniqueness by relating embedding results and network structures as well as explaining the learned features by cNRL. We demonstrate the usefulness of ContraNA with two case studies using real-world datasets. We also evaluate through a controlled user study with 12 participants on network comparison tasks. The results show that participants were able to both effectively identify unique characteristics from complex networks and interpret the results obtained from cNRL.
Over the last two decades, alongside the increased availability of large network datasets, we have witnessed the rapid rise of network science. For many systems, however, the data we have access to is not a direct description of the underlying networ k. More and more, we see the drive to study networks that have been inferred or reconstructed from non-network data---in particular, using time series data from the nodes in a system to infer likely connections between them. Selecting the most appropriate technique for this task is a challenging problem in network science. Different reconstruction techniques usually have different assumptions, and their performance varies from system to system in the real world. One way around this problem could be to use several different reconstruction techniques and compare the resulting networks. However, network comparison is also not an easy problem, as it is not obvious how best to quantify the differences between two networks, in part because of the diversity of tools for doing so. The netrd Python package seeks to address these two parallel problems in network science by providing, to our knowledge, the most extensive collection of both network reconstruction techniques and network comparison techniques (often referred to as graph distances) in a single library (https://github.com/netsiphd/netrd). In this article, we detail the two main functionalities of the netrd package. Along the way, we describe some of its other useful features. This package builds on commonly used Python packages and is already a widely used resource for network scientists and other multidisciplinary researchers. With ongoing open-source development, we see this as a tool that will continue to be used by all sorts of researchers to come.
66 - Dmitry Zinoviev 2020
Kompromat (the Russian word for compromising material) has been efficiently used to harass Russian political and business elites since the days of the USSR. Online crowdsourcing projects such as RuCompromat made it possible to catalog and analyze kom promat using quantitative techniques -- namely, social network analysis. In this paper, we constructed a social network of 11,000 Russian and foreign nationals affected by kompromat in Russia in 1991 -- 2020. The network has an excellent modular structure with 62 dense communities. One community contains prominent American officials, politicians, and entrepreneurs (including President Donald Trump) and appears to concern Russias controversial interference in the 2016 U.S. presidential elections. Various network centrality measures identify seventeen most central kompromat figures, with President Vladimir Putin solidly at the top. We further reveal four types of communities dominated by entrepreneurs, politicians, bankers, and law enforcement officials (siloviks), the latter disjointed from the first three.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
We study the problem of optimally investing in nodes of a social network in a competitive setting, wherein two camps aim to drive the average opinion of the population in their own favor. Using a well-established model of opinion dynamics, we formula te the problem as a zero-sum game with its players being the two camps. We derive optimal investment strategies for both camps, and show that a random investment strategy is optimal when the underlying network follows a popular class of weight distributions. We study a broad framework, where we consider various well-motivated settings of the problem, namely, when the influence of a camp on a node is a concave function of its investment on that node, when a camp aims at maximizing competitors investment or deviation from its desired investment, and when one of the camps has uncertain information about the values of the model parameters. We also study a Stackelberg variant of this game under common coupled constraints on the combined investments by the camps and derive their equilibrium strategies, and hence quantify the first-mover advantage. For a quantitative and illustrative study, we conduct simulations on real-world datasets and provide results and insights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا