ترغب بنشر مسار تعليمي؟ اضغط هنا

The VISCACHA survey -- II. Structure of star clusters in the Magellanic Clouds periphery

385   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Francisco C. Santos Jr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a homogeneous set of structural parameters of 83 star clusters located at the periphery of the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC). The clusters stellar density and surface brightness profiles were built from deep, AO assisted optical images, and uniform analysis techniques. The structural parameters were obtained from King and Elson et al. model fittings. Integrated magnitudes and masses (for a subsample) are also provided. The sample contains mostly low surface brightness clusters with distances between 4.5 and 6.5 kpc and between 1 and 6.5 kpc from the LMC and SMC centres, respectively. We analysed their spatial distribution and structural properties, comparing them with those of inner clusters. Half-light and Jacobi radii were estimated, allowing an evaluation of the Roche volume tidal filling. We found that: (i) for our sample of LMC clusters, the tidal radii are, on average, larger than those of inner clusters from previous studies; (ii) the core radii dispersion tends to be greater for LMC clusters located towards the southwest, with position angles of $sim$200 degrees and about $sim$5 degrees from the LMC centre, i.e., those LMC clusters nearer to the SMC; (iii) the core radius evolution for clusters with known age is similar to that of inner clusters; (iv) SMC clusters with galactocentric distances closer than 4 kpc are overfilling; (v) the recent Clouds collision did not leave marks on the LMC clusters structure that our analysis could reveal.

قيم البحث

اقرأ أيضاً

Context. The interactions between the SMC and LMC created the Magellanic Bridge, a stream of gas and stars pulled out of the SMC towards the LMC about 150 Myr ago. The tidal counterpart of this structure, which should include a trailing arm, has been predicted by models but no compelling observational evidence has confirmed the Counter-Bridge so far. Aims. The main goal of this work is to find the stellar counterpart of the Magellanic Bridge and Counter-Bridge. We use star clusters in the SMC outskirts as they provide 6D phase-space vector, age and metallicity that help characterise the outskirts of the SMC. Methods. Distances, ages and photometric metallicities are derived from fitting isochrones to the colour-magnitude diagrams from the VISCACHA survey. Radial velocities and spectroscopic metallicities are derived from the spectroscopic follow-up using GMOS in the CaII triplet region. Results. Among the seven clusters analysed in this work, five belong to the Magellanic Bridge and one belongs to the Counter-Bridge and the other to the transition region. Conclusions. The existence of the tidal counterpart of the Magellanic Bridge is evidenced by star clusters. The stellar component of the Magellanic Bridge and Counter-Bridge are confirmed in the SMC outskirts. These results are an important constraint for models that seek to reconstruct the history of the orbit and interactions between LMC-SMC and constrain their future interaction including with the Milky Way.
We propose a combination of a modified Wide-Fast-Deep survey, a mini-survey of the South Celestial Pole, and a Deep Drilling-style survey to produce a 3-D map of the Magellanic System and to provide a detailed census of the transient and variable pop ulations in the Clouds. We support modifying the Wide-Fast-Deep survey to cover the declination range $-72.25deg<{rm Dec}<12.4deg$ and the Galactic latitude range $|b|>15deg$, as proposed in a separate white paper. We additionally propose a mini-survey covering the 950$deg^2$ with ${rm Dec} < -72.25$ in $ugriz$ to the standard LSST single-exposure depth and with 40 visits per filter per field. Finally, we propose a mini-survey covering $sim100 deg^2$ of the main bodies of the Clouds with twelve total pointings, 2000 total visits per field, and shorter exposure time.
We present spectroscopy of individual stars in 26 Magellanic Cloud (MC) star clusters with the aim of estimating dynamical masses and $V$-band mass-to-light ($M/L_V$) ratios over a wide range in age and metallicity. We obtained 3137 high-resolution s tellar spectra with M2FS on the textit{Magellan}/Clay Telescope. Combined with 239 published spectroscopic results of comparable quality, we produced a final sample of 2787 stars with good quality spectra for kinematic analysis in the target clusters. Line-of-sight velocities measured from these spectra and stellar positions within each cluster were used in a customized expectation-maximization (EM) technique to estimate cluster membership probabilities. Using appropriate cluster structural parameters and corresponding single-mass dynamical models, this technique ultimately provides self-consistent total mass and $M/L_V$ estimates for each cluster. Mean metallicities for the clusters were also obtained and tied to a scale based on calcium IR triplet metallicites. We present trends of the cluster $M/L_V$ values with cluster age, mass and metallicity, and find that our results run about 40 per cent on average lower than the predictions of a set of simple stellar population (SSP) models. Modified SSP models that account for internal and external dynamical effects greatly improve agreement with our results, as can models that adopt a strongly bottom-light IMF. To the extent that dynamical evolution must occur, a modified IMF is not required to match data and models. In contrast, a bottom-heavy IMF is ruled out for our cluster sample as this would lead to higher predicted $M/L_V$ values, significantly increasing the discrepancy with our observations.
We study the morphology of the stellar periphery of the Magellanic Clouds in search of substructure using near-infrared imaging data from the VISTA Hemisphere Survey (VHS). Based on the selection of different stellar populations using the ($J-K_mathr m{s}$, $K_mathrm{s}$) colour-magnitude diagram, we confirm the presence of substructures related to the interaction history of the Clouds and find new substructures on the easter side of the LMC disc which may be owing to the influence of the Milky Way, and on the northern side of the SMC, which is probably associated to the ellipsoidal structure of the galaxy. We also study the luminosity function of red clump stars in the SMC and confirm the presence of a bi-modal distance distribution, in the form of a foreground population. We find that this bi-modality is still detectable in the eastern regions of the galaxy out to a 10 deg distance from its centre. Additionally, a background structure is detected in the North between 7 and 10 deg from the centre which might belong to the Counter Bridge, and a foreground structure is detected in the South between 6 and 8 deg from the centre which might be linked to the Old Bridge.
178 - T. Bitsakis 2017
We present a new study of the spatial distribution and ages of the star clusters in the Small Magellanic Cloud (SMC). To detect and estimate the ages of the star clusters we rely on the new fully-automated method developed by Bitsakis et al. (2017). Our code detects 1319 star clusters in the central 18 deg$^{2}$ of the SMC we surveyed (1108 of which have never been reported before). The age distribution of those clusters suggests enhanced cluster formation around 240 Myr ago. It also implies significant differences in the cluster distribution of the bar with respect to the rest of the galaxy, with the younger clusters being predominantly located in the bar. Having used the same set-up, and data from the same surveys as for our previous study of the LMC, we are able to robustly compare the cluster properties between the two galaxies. Our results suggest that the bulk of the clusters in both galaxies were formed approximately 300 Myr ago, probably during a direct collision between the two galaxies. On the other hand, the locations of the young ($le$50 Myr) clusters in both Magellanic Clouds, found where their bars join the HI arms, suggest that cluster formation in those regions is a result of internal dynamical processes. Finally, we discuss the potential causes of the apparent outside-in quenching of cluster formation that we observe in the SMC. Our findings are consistent with an evolutionary scheme where the interactions between the Magellanic Clouds constitute the major mechanism driving their overall evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا