ﻻ يوجد ملخص باللغة العربية
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure. The superconducting phase results from the out-of-equilibrium excitation of carriers in the presence of Coulomb repulsion and is stabilized by coupling the driven semiconductor to a bosonic or fermionic thermal bath. We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced. The emergence of novel superconducting states, such as the chiral $p$-wave pairing, results from the Floquet engineering of the interaction. This is realized by modifying the form of the Coulomb interaction by projecting it into the states that are resonant with the pump frequency. We show that the resulting unconventional pairing in our system can host topologically protected chiral bound states. We discuss a promising experimental platform to realize our proposal and detect the signatures of the emergent superconducting state.
We study how $d$-wave superconductivity is changed when illuminated by circularly-polarised light (CPL) in the repulsive Hubbard model in the strong-coupling regime. We adopt the Floquet formalism for the Gutzwiller-projected effective Hamiltonian wi
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Flo
It was recently suggested that the topology of magic-angle twisted bilayer graphenes (MATBG) flat bands could provide a novel mechanism for superconductivity distinct from both weakly-coupled BCS theory and the $d$-wave phenomenology of the high-$T_c
We present a quantitative, near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules. In particular, we focus on the so-called Hopf insulator, which represents a three-dimens
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some propert