ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically induced topological superconductivity via Floquet interaction engineering

181   0   0.0 ( 0 )
 نشر من قبل Hossein Dehghani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure. The superconducting phase results from the out-of-equilibrium excitation of carriers in the presence of Coulomb repulsion and is stabilized by coupling the driven semiconductor to a bosonic or fermionic thermal bath. We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced. The emergence of novel superconducting states, such as the chiral $p$-wave pairing, results from the Floquet engineering of the interaction. This is realized by modifying the form of the Coulomb interaction by projecting it into the states that are resonant with the pump frequency. We show that the resulting unconventional pairing in our system can host topologically protected chiral bound states. We discuss a promising experimental platform to realize our proposal and detect the signatures of the emergent superconducting state.



قيم البحث

اقرأ أيضاً

We study how $d$-wave superconductivity is changed when illuminated by circularly-polarised light (CPL) in the repulsive Hubbard model in the strong-coupling regime. We adopt the Floquet formalism for the Gutzwiller-projected effective Hamiltonian wi th the time-periodic Schrieffer-Wolff transformation. We find that CPL induces a topological superconductivity with a $d+id$ pairing, which arises from the chiral spin coupling and the three-site term generated by the CPL. The latter effect remains significant even for low frequencies and low intensities of the CPL. This is clearly seen in the obtained phase diagram against the laser intensity and temperature for various frequencies red-detuned from the Hubbard $U$, with the transient dynamics also examined. The phenomenon revealed here can provide a novel way to induce a topological superconductivity.
We study a realistic Floquet topological superconductor, a periodically driven nanowire proximitized to an equilibrium s-wave superconductor. Due to both strong energy and density fluctuations caused from the superconducting proximity effect, the Flo quet Majorana wire becomes dissipative. We show that the Floquet band structure is still preserved in this dissipative system. In particular, we find that both the Floquet Majorana zero and pi modes can no longer be simply described by the Floquet topological band theory. We also propose an effective model to simplify the calculation of the lifetime of these Floquet Majoranas, and find that the lifetime can be engineered by the external driving field.
It was recently suggested that the topology of magic-angle twisted bilayer graphenes (MATBG) flat bands could provide a novel mechanism for superconductivity distinct from both weakly-coupled BCS theory and the $d$-wave phenomenology of the high-$T_c $ cuprates. In this work, we examine this possibility using a density matrix renormalization group (DMRG) study of a model which captures the essential features of MATBGs symmetry and topology. Using large scale cylinder-DMRG calculations to obtain the ground state and its excitations as a function of the electron doping, we find clear evidence for superconductivity driven by the binding of electrons into charge-$2e$ skyrmions. Remarkably, this binding is observed even in the regime where the unscreened Coulomb repulsion is by-far the largest energy scale, demonstrating the robustness of this topological, all-electronic pairing mechanism.
We present a quantitative, near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules. In particular, we focus on the so-called Hopf insulator, which represents a three-dimens ional topological state of matter existing outside the conventional tenfold way and crystalline-symmetry-based classifications of topological insulators. Its topology is protected by a emph{linking number} invariant, which necessitates long-range spin-orbit coupled hoppings for its realization. While these ingredients have so far precluded its realization in solid state systems and other quantum simulation architectures, in a companion manuscript [1901.08597] we predict that Hopf insulators can in fact arise naturally in dipolar interacting systems. Here, we investigate a specific such architecture in lattices of polar molecules, where the effective `spin is formed from sublattice degrees of freedom. We introduce two techniques that allow one to optimize dipolar Hopf insulators with large band gaps, and which should also be readily applicable to the simulation of other exotic bandstructures. First, we describe the use of Floquet engineering to control the range and functional form of dipolar hoppings and second, we demonstrate that molecular AC polarizabilities (under circularly polarized light) can be used to precisely tune the resonance condition between different rotational states. To verify that this latter technique is amenable to current generation experiments, we calculate from first principles the AC polarizability for $sigma^+$ light for ${}^{40}$K$^{87}$Rb. Finally, we show that experiments are capable of detecting the unconventional topology of the Hopf insulator by varying the termination of the lattice at its edges, which gives rise to three distinct classes of edge mode spectra.
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some propert ies of this type of systems by using a Slater-Koster tight-binding model. We predict that topological superconductivity is nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. The proximity induced superconducting gap is $sim Delta E_{so} / J$ where $Delta$ is the $s$-wave pair-potential on the chain, $E_{so}$ is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and $J$ is the exchange-splitting of the ferromagnetic chain $d$-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the $p$-wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong $s-$wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple Majorana modes at the end of a single chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا