ترغب بنشر مسار تعليمي؟ اضغط هنا

van der Waals coefficients of the multi-layered MoS$_2$ with alkali metals

69   0   0.0 ( 0 )
 نشر من قبل Bindiya Arora
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The van der Waals coefficients and the separation dependent retardation functions of the interactions between the atomically thin films of the multi-layered transition metal molybdenum disulfide (MoS$_2$) dichalcogenides with the alkali atoms are investigated. First, we determine the frequency-dependent dielectric permittivity and intrinsic carrier density values for different layers of MoS$_2$ by adopting various fitting models to the recently measured optical data reported by Yu and co-workers [Sci. Rep. {bf 5}, 16996 (2015)] using spectroscopy ellipsometry. Then, dynamic electric dipole polarizabilities of the alkali atoms are evaluated very accurately by employing the relativistic coupled-cluster theory. We also demonstrate the explicit change in the above coefficients for different number of layers. These studies are highly useful for the optoelectronics, sensing and storage applications using layered MoS$_2$.

قيم البحث

اقرأ أيضاً

The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe bindin g energies and structures for van der Waals complexes and mixed systems with good accuracy, one long-standing criticism---also since its inception---has been that the $C_6$ coefficients that derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure to describe the $C_6$ coefficients is a conceptual flaw of the underlying plasmon framework used to derive vdW-DF. We prove here that this is not the case and that accurate $C_6$ coefficient can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits a degree of freedom in the plasmon-dispersion model $omega_{mathbf{q}}$, modifying the strength of the long-range van der Waals interaction and the cross-over from long to short separations, with additional parameters tuned_ to reference systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved description of $C_6$ coefficients, but we also find excellent performance for molecular dimers and other systems. The importance of this development is not necessarily that particular aspects such as $C_6$ coefficients or binding energies are improved, but rather that our finding opens the door for further conceptual developments of an entirely unexplored direction within the exact same constrained-based non-local framework that made vdW-DF so successful in the first place.
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated by the notion that less stiff materials could exhibit large piezoelectric responses, herein we investigate the piezoelectric modulus of van der Waals-bonded quasi-2D ionic compounds using first-principles calculations. From a pool of 869 known binary and ternary quasi-2D materials, we have identified 135 non-centrosymmetric crystals of which 48 systems are found to have textbf{d} components larger than the longitudinal piezoelectric modulus of AlN (a common piezoelectric for resonators), and three systems with the response greater than that of PbTiO$_3$, which is among the materials with largest known piezoelectric modulus. None of the identified materials have previously been considered for piezoelectric applications. Furthermore, we find that large textbf{d} components always couple to the deformations (shearing or axial) of van der Waals gaps between the layers and are indeed enabled by the weak intra-layer interactions.
Van der Waals heterostructures such as graphene/MoS$_2$ are promising candidates for plenty of optical or electronic applications, owing to advanced properties inherited from the constitutional atomic layers. Thermal expansion is an important phenome non to be considered for the thermal stability of the van der Waals heterstructure as temperature commonly rises during the operation of nano devices. In the present work, the thermal expansion coefficient for the graphene/MoS$_2$ heterostructure is investigated by molecular dynamics simulations, and the effect from the unavoidable misfit strain on the thermal expansion coefficient is revealed. The misfit strain can tune the thermal expansion coefficient by a factor of six, and this effect is quite robust in sense that it is not sensitive to the size or direction of the heterostructure. An analytic formula is derived to directly relate the thermal expansion coefficient to the misfit strain of the heterostructure, which qualitatively agrees with the numerical results although the analytic formula underestimates the misfit strain effect. Further analysis discloses that the misfit strain can efficiently engineer the thermal induced ripples, which serves as the key mechanism for the misfit strain effect on the thermal expansion coefficient. These findings provide valuable information for the thermal stability of van der Waals heterostructures and shall be benefit for practical applications of van der Waals heterostructure based nano devices.
The discovery of new families of exfoliatable 2D crystals that have diverse sets of electronic, optical, and spin-orbit coupling properties, enables the realization of unique physical phenomena in these few-atom thick building blocks and in proximity to other materials. Herein, using NaSn2As2 as a model system, we demonstrate that layered Zintl phases having the stoichiometry ATt2Pn2 (A = Group 1 or 2 element, Tt = Group 14 tetrel element and Pn = Group 15 pnictogen element) and feature networks separated by van der Waals gaps can be readily exfoliated with both mechanical and liquid-phase methods. We identified the symmetries of the Raman active modes of the bulk crystals via polarized Raman spectroscopy. The bulk and mechanically exfoliated NaSn2As2 samples are resistant towards oxidation, with only the top surface oxidizing in ambient conditions over a couple of days, while the liquid-exfoliated samples oxidize much more quickly in ambient conditions. Employing angle-resolved photoemission spectroscopy (ARPES), density functional theory (DFT), and transport on bulk and exfoliated samples, we show that NaSn2As2 is a highly conducting 2D semimetal, with resistivities on the order of 10-6 {Omega} m. Due to peculiarities in the band structure, the dominating p-type carriers at low temperature are nearly compensated by the opening of n-type conduction channels as temperature increases. This work further expands the family of exfoliatable 2D materials to layered van der Waals Zintl phases, opening up opportunities in electronics and spintronics.
The adsorption of aromatic molecules on metal surfaces plays a key role in condensed matter physics and functional materials. Depending on the strength of the interaction between the molecule and the surface, the binding is typically classified as ei ther physisorption or chemisorption. Van der Waals (vdW) interactions contribute significantly to the binding in physisorbed systems, but the role of the vdW energy in chemisorbed systems remains unclear. Here we study the interaction of benzene with the (111) surface of transition metals, ranging from weak adsorption (Ag and Au) to strong adsorption (Pt, Pd, Ir, and Rh). When vdW interactions are accurately accounted for, the barrier to adsorption predicted by standard density functional theory (DFT) calculations essentially vanishes, producing a metastable precursor state on Pt and Ir surfaces. Notably, vdW forces contribute more to the binding of covalently bonded benzene than they do when benzene is physisorbed. Comparison to experimental data demonstrates that some of the recently developed methods for including vdW interactions in DFT allow quantitative treatment of both weakly and strongly adsorbed aromatic molecules on metal surfaces, extending the already excellent performance found for gas-phase molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا