ﻻ يوجد ملخص باللغة العربية
We report results from a neutral hydrogen (HI) intensity mapping survey conducted with a Phased Array Feed (PAF) on the Parkes telescope. The survey was designed to cover ~ 380 deg^2 over the redshift range 0.3 < z < 1 (a volume of ~ 1.5 Gpc^3) in four fields covered by the WiggleZ Dark Energy Survey. The results presented here target a narrow redshift range of 0.73 < z < 0.78 where the effect of radio frequency interference (RFI) was less problematic. The data reduction and simulation pipeline is described, with an emphasis on flagging of RFI and correction for signal loss in the data reduction process, particularly due to the foreground subtraction methodology. A cross-correlation signal was detected between the HI intensity maps and the WiggleZ redshift data, with a mean amplitude of<{Delta}T_b{delta}_{opt}> = 1.32 pm 0.42 mK (statistical errors only). A future Parkes cryogenic PAF is expected to detect the cross-correlation signal with higher accuracy than previously possible and allow measurement of the cosmic HI density at redshifts up to unity.
In this report we present a model for phased array feed (PAF) and compare the model predictions with measurements. A theory for loss-less PAF is presented first. To develop the theory we ask the question -- what is the best $T_{sys}/eta_{ap}$ that ca
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mappi
Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field flys-eye configuration using the phased-array-feed t