ﻻ يوجد ملخص باللغة العربية
Non-Hermitian phenomena offer a novel approach to analyze and interpret spectra in the presence of interactions. Using the density-matrix renormalization group (DMRG), we demonstrate the existence of exceptional points for the one-particle Greens function of the 1D alternating Hubbard chain with chiral symmetry, with a corresponding Fermi arc at zero frequency in the spectrum. They result from the non-Hermiticity of the effective Hamiltonian describing the Greens function and only appear at finite temperature. They are robust and can be topologically characterized by the zeroth Chern number. This effect illustrates a case where temperature has a strong effect in 1D beyond the simple broadening of spectral features. Finally, we demonstrate that exceptional points appear even in the two-particle Greens function (charge structure factor) where an effective Hamiltonian is difficult to establish, but move away from zero frequency due to a distinct symmetry constraint.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes
A detailed study of the one-dimensional ionic Hubbard model with interaction $U$ is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing $U$. By a recently introduced
Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation func
We study the interplay of disorder and correlation in the one-dimensional hole-doped Hubbard-model with disorder (Anderson-Hubbard model) by using the density-matrix renormalization group method. Concentrating on the doped-hole density profile, we fi