ﻻ يوجد ملخص باللغة العربية
It is generally accepted that double neutrinoless electron capture is a resonance process. The calculations of the probability of shaking with the ionization of the electron shell occurring during the transformation of 152Gd and 164Er nuclei are performed below. These nuclides have the lowest resonance defect among all known nuclei, being considered as main candidates for discovering the neutrinoless mode of the transformation. The results show predominant contribution of the new mechanism for most of the candidate nuclei. The value of this amendment rapidly increases with an increasing resonance defect. Thus, in principle, double neutrinoless electron capture appears not to be a resonance process at all.
Electron capture can determine the electron neutrino mass, while the beta decay of Tritium measures the electron antineutrino mass and the neutrinoless double beta decay observes the Majorana neutrino mass. Electron capture e. g. on 163Ho plus bound
A new generation of neutrinoless double beta decay experiments with improved sensitivity is currently under design and construction. They will probe inverted hierarchy region of the neutrino mass pattern. There is also a revived interest to the reson
Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta deca
Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of $^{36}$Ar has been performed with germanium
From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino