ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Comptonization as the origin of the continuum in nonmagnetic Cataclysmic Variables. The photon index of X-ray emission

116   0   0.0 ( 0 )
 نشر من قبل Tais Maiolino Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray spectra of nonmagnetic cataclysmic variables (nmCVs) in the ~ 0.3$-$15 keV energy band have been described either by one or several optically thin thermal plasma components, or by cooling flow models. We tested if the spectral continuum in nmCVs could be successfully described by Comptonization of soft photons off hot electrons presented in a cloud surrounding the source [the transition layer, (TL)]. We used publicly XMM-Newton Epic-pn, Chandra HETG/ACIS and LETG/HRC, and RXTE PCA and HEXTE observations of four Dwarf Novae (U~Gem, SS~Cyg, VW~Hyi and SS~Aur) observed in the quiescence and outburst states. In total, we analyzed 18 observations, including a simultaneous 0.4$-$150 keV Chandra/RXTE spectrum of SS~Cyg in quiescence. We fitted the spectral continuum with up to two thermal Comptonization components (compTT or compTB models in XSPEC), using only one thermal plasma temperature and one optical depth. In this framework the two seed photon components are coming presumably from the innermost and outer parts of the TL (or innermost part of the disk). We obtained that the thermal Comptonization can successfully describe the spectral continuum of these nmCV in the ~ 0.4$-$150 keV energy band. Moreover, we present the first principal radiative transfer model which explains the quasi-constancy of the spectral photon index observed around 1.8, which strongly supports the Comptonization framework in nmCVs.


قيم البحث

اقرأ أيضاً

520 - P.O. Petrucci 2017
The X-ray spectra of many active galactic nuclei (AGN) show a soft X-ray excess below 1-2 keV on top of the extrapolated high- energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized r eflection, or the high-energy tail of thermal Comptonization in a warm (kT $sim$ 1 keV), optically thick ($tausimeq$ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGN with XMM-newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal comptonization components to fit the broad-band spectra, one for the warm corona emission and one for the high-energy continuum. In the optical-UV, we also include the reddening, the small blue bump and the Galactic extinction. In the X-rays, we include a WA and a neutral reflection. The model gives a good fit (reduced $chi^2 <1.5$) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range $sim$10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disc, i.e. that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.
The disk instability model attributes the outbursts of dwarf novae to a thermal-viscous instability of their accretion disk, an instability to which nova-like stars are not subject. We aim to test the fundamental prediction of the disk instability mo del: the separation of cataclysmic variables (CVs) into nova-likes and dwarf novae depending on orbital period and mass transfer rate from the companion. We analyse the lightcurves from a sample of ~130 CVs with a parallax distance in the Gaia DR2 catalogue to derive their average mass transfer rate. The method for converting optical magnitude to mass accretion rate is validated against theoretical lightcurves of dwarf novae. Dwarf novae (resp. nova-likes) are consistently placed in the unstable (resp. stable) region of the orbital period - mass transfer rate plane predicted by the disk instability model. None of the analyzed systems present a challenge to the model. These results are robust against the possible sources of error and bias that we investigated. Lightcurves from Kepler or, in the future, the LSST or Plato surveys, could alleviate a major source of uncertainty, the irregular sampling rate of the lightcurves, assuming good constraints can be set on the orbital parameters of the CVs that they happen to target. The disk instability model remains the solid base on which to construct the understanding of accretion processes in cataclysmic variables.
Among hard X-ray Galactic sources detected in the Swift and INTEGRAL surveys, those discovered as accreting white dwarf binaries have suprisingly boosted in number in the recent years. The majority are identified as magnetic Cataclysmic Variables of the Intermediate Polar type, suggesting this subclass as an important constituent of the Galactic population of X-ray sources. We here review and discuss the X-ray emission properties of newly discovered sources in the framework of an identification programme with the XMM-Newton satellite that increased the sample of this subclass by a factor of two.
164 - Jie-Ying Liu , Jirong Mao 2020
The detection of the gamma-ray burst (GRB) X-ray emission line is important for studying the GRB physics and constraining the GRB redshift. Since the line-like feature in the GRB X-ray spectrum was first reported in 1999, several works on line search ing have been published over the past two decades. Even though some observations on the X-ray line-like feature were performed, the significance remains controversial to date. In this paper, we utilize the down-Comptonization mechanism and present the time evolution of the Fe K$alpha$ line emitted near the GRB central engine. The line intensity decreases with the evolution time, and the time evolution depends on the the electron density and the electron temperature. In addition, the initial line with a larger broadening decreases less over time. For instance, when the emission line penetrates material with the an electron density above $10^{12}$ cm$^{-3}$ at 1 keV, it generally becomes insignificant enough after 100 s for it not to be detected. The line-like profile deviates from the Gaussian form, and it finally changes to be similar to a blackbody shape at the time of the thermal equilibrium between the line photons and the surrounding material.
We present a sample of eight cataclysmic variables (CVs) identified among the X-ray sources of the 400 square degree (400d) X-ray ROSAT/PSPC survey. Based on this sample, we have obtained preliminary constraints on the X-ray luminosity function of CV s in the solar neighbourhood in the range of low luminosities, L_X=~1e29-1e30 erg/s (0.5-2 keV). We show that the logarithmic slope of the CV luminosity function in this luminosity range is less steep than that at L_X>1e31 erg/s. Our results show that of order of thousand CVs will be detected in the SRG/eROSITA all-sky survey at high Galactic latitudes, which will allow to obtain much more accurate measurements of their X-ray luminosity function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا