ﻻ يوجد ملخص باللغة العربية
Supersymmetric (SUSY) extension of the Standard Model (SM) is a primary candidate for new physics beyond the SM. If SUSY breaking scale is very low, for example, the multi-TeV range, and the SUSY breaking sector, except for the goldstino (gravitino), is decoupled from the low energy spectrum, the hidden sector effect in the minimal SUSY SM (MSSM) is well described by employing the goldstino chiral superfield ($X$) with the nilpotent condition of $X^2=0$. Although this so-called nonlinear MSSM (NL-MSSM) provides a variety of interesting phenomenologies, there is a cosmological problem that the lightest superpartner gravitino is too light to be the major component of the dark matter (DM) in our universe. To solve this problem, we propose a minimal extension of the NL-MSSM by introducing a parity-odd SM singlet chiral superfield ($Phi$). We show that the interaction of the scalar component in $Phi$ with the MSSM Higgs doublets is induced after eliminating F-component of the goldstino superfield and the lightest real scalar in $Phi$ plays the role of the Higgs-portal DM. With a suitable choice of the model parameters, a successful Higgs-portal DM scenario can be realized while achieving the SM-like Higgs boson mass of 125 GeV from the tree-level Higgs potential through the multi-TeV SUSY breaking effect.
We review scenarios in which the particles that account for the Dark Matter (DM) in the Universe interact only through their couplings with the Higgs sector of the theory, the so-called Higgs-portal models. In a first step, we use a general and model
We study a fermionic dark matter model in which the interaction of the dark and visible sectors is mediated by Higgs portal type couplings. Specifically, we consider the mixing of a dark sector scalar with the scalars of a Two Higgs Doublet Model ext
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet dark matter can
Fermion dark matter (DM) interacting with the standard model through a Higgs portal requires non-renormalizable operators, signaling the presence of new mediator states at the electroweak scale. Collider signatures that involve the mediators are a po
We present a new model of Stealth Dark Matter: a composite baryonic scalar of an $SU(N_D)$ strongly-coupled theory with even $N_D geq 4$. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional d