ﻻ يوجد ملخص باللغة العربية
Our previous works have demonstrated that visually realistic 3D meshes can be automatically reconstructed with low-cost, off-the-shelf unmanned aerial systems (UAS) equipped with capable cameras, and efficient photogrammetric software techniques. However, such generated data do not contain semantic information/features of objects (i.e., man-made objects, vegetation, ground, object materials, etc.) and cannot allow the sophisticated user-level and system-level interaction. Considering the use case of the data in creating realistic virtual environments for training and simulations (i.e., mission planning, rehearsal, threat detection, etc.), segmenting the data and extracting object information are essential tasks. Thus, the objective of this research is to design and develop a fully automated photogrammetric data segmentation and object information extraction framework. To validate the proposed framework, the segmented data and extracted features were used to create virtual environments in the authors previously designed simulation tool i.e., Aerial Terrain Line of Sight Analysis System (ATLAS). The results showed that 3D mesh trees could be replaced with geo-typical 3D tree models using the extracted individual tree locations. The extracted tree features (i.e., color, width, height) are valuable for selecting the appropriate tree species and enhance visual quality. Furthermore, the identified ground material information can be taken into consideration for pathfinding. The shortest path can be computed not only considering the physical distance, but also considering the off-road vehicle performance capabilities on different ground surface materials.
Early and correct diagnosis is a very important aspect of cancer treatment. Detection of tumour in Computed Tomography scan is a tedious and tricky task which requires expert knowledge and a lot of human working hours. As small human error is present
With state-of-the-art sensing and photogrammetric techniques, Microsoft Bing Maps team has created over 125 highly detailed 3D cities from 11 different countries that cover hundreds of thousands of square kilometer areas. The 3D city models were crea
At I/ITSEC 2019, the authors presented a fully-automated workflow to segment 3D photogrammetric point-clouds/meshes and extract object information, including individual tree locations and ground materials (Chen et al., 2019). The ultimate goal is to
Semantic image segmentation aims to obtain object labels with precise boundaries, which usually suffers from overfitting. Recently, various data augmentation strategies like regional dropout and mix strategies have been proposed to address the proble
Purpose: Development of a fast and fully automated deep learning pipeline (FatSegNet) to accurately identify, segment, and quantify abdominal adipose tissue on Dixon MRI from the Rhineland Study - a large prospective population-based study. Method: F