ﻻ يوجد ملخص باللغة العربية
We report an out-of-plane magnetic field induced large photoluminescence enhancement in WS${}_2$ flakes at $4$ K, in contrast to the photoluminescence enhancement provided by in-plane field in general. Two mechanisms for the enhancement are proposed. One is a larger overlap of electron and hole caused by the magnetic field induced confinement. The other is that the energy difference between $Lambda$ and K valleys is reduced by magnetic field, and thus enhancing the corresponding indirect-transition trions. Meanwhile, the Lande g factor of the trion is measured as $-0.8$, whose absolute value is much smaller than normal exciton, which is around $|-4|$. A model for the trion g factor is presented, confirming that the smaller absolute value of Lande g factor is a behavior of this $Lambda$-K trion. By extending the valley space, we believe this work provides a further understanding of the valleytronics in monolayer transition metal dichalcogenides.
In this study, we observe that the conductance of a quantum point contact on a GaAs/AlGaAs double quantum well depends significantly on the magnetic field perpendicular to the two-dimensional electron gas. In the presence of the magnetic field, the s
Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with nat
We study spin-transport in bilayer-graphene (BLG), spin-orbit coupled to a tungsten di sulfide (WS$_2$) substrate, and measure a record spin lifetime anisotropy ~40-70, i.e. ratio between the out-of-plane $tau_{perp}$ and in-plane spin relaxation tim
We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the
The thermoelectric properties of conductors with low electron density can be altered significantly by an applied magnetic field. For example, recent work has shown that Dirac/Weyl semimetals with a single pocket of carriers can exhibit a large enhanc