ﻻ يوجد ملخص باللغة العربية
The recently introduced Gaussian Process State (GPS) provides a highly flexible, compact and physically insightful representation of quantum many-body states based on ideas from the zoo of machine learning approaches. In this work, we give a comprehensive description how such a state can be learned from given samples of a potentially unknown target state and show how regression approaches based on Bayesian inference can be used to compress a target state into a highly compact and accurate GPS representation. By application of a type II maximum likelihood method based on Relevance Vector Machines (RVM), we are able to extract many-body configurations from the underlying Hilbert space which are particularly relevant for the description of the target state, as support points to define the GPS. Together with an introduced optimization scheme for the hyperparameters of the model characterizing the weighting of modelled correlation features, this makes it possible to easily extract physical characteristics of the state such as the relative importance of particular correlation properties. We apply the Bayesian learning scheme to the problem of modelling ground states of small Fermi-Hubbard chains and show that the found solutions represent a systematically improvable trade-off between sparsity and accuracy of the model. Moreover, we show how the learned hyperparameters and the extracted relevant configurations, characterizing the correlation of the wavefunction, depend on the interaction strength of the Hubbard model as well as the target accuracy of the representation.
In order to simulate open quantum systems, many approaches (such as Hamiltonian-based solvers in dynamical mean-field theory) aim for a reproduction of a desired environment spectral density in terms of a discrete set of bath states, mimicking the op
In this work we present a new framework for neural networks compression with fine-tuning, which we called Neural Network Compression Framework (NNCF). It leverages recent advances of various network compression methods and implements some of them, su
The simulation of strongly correlated many-electron systems is one of the most promising applications for near-term quantum devices. Here we use a class of eigenvalue solvers (presented in Phys. Rev. Lett. 126, 070504 (2021)) in which a contraction o
The similarities between Hartree-Fock (HF) theory and the density-matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function ansatz. Linearization of the time-dependent variatio
We present a simple, robust and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the repres