ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning interchain ferromagnetic instability in A2Cr3As3 ternary arsenides by chemical pressure and uniaxial strain

51   0   0.0 ( 0 )
 نشر من قبل Carmine Autieri Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the effects of chemical pressure induced by alkali metal substitution and uniaxial strain on magnetism in the A2Cr3As3 (A = Na, K, Rb, Cs) family of ternary arsenides with quasi-one dimensional structure. Within the framework of the density functional theory, we predict that the non-magnetic phase is very close to a 3D collinear ferrimagnetic state, which realizes in the regime of moderate correlations, such tendency being common to all the members of the family with very small variations due to the different interchain ferromagnetic coupling. We uncover that the stability of such interchain ferromagnetic coupling has a non-monotonic behavior with increasing the cation size, being critically related to the degree of structural distortions which is parametrized by the Cr-As-Cr bonding angles along the chain direction. In particular, we demonstrate that it is boosted in the case of the Rb, in agreement with recent experiments. We also show that uniaxial strain is a viable tool to tune the non-magnetic phase towards an interchain ferromagnetic instability. The modifcation of the shape of the Cr triangles within the unit cell favors the formation of a net magnetization within the chain and of a ferromagnetic coupling among the chains. This study can provide relevant insights about the interplay between superconductivity and magnetism in this class of materials.

قيم البحث

اقرأ أيضاً

90 - K. Zhao , C. Stingl , R.S. Manna 2015
Single crystals of Ca(Fe1-xRux)2As2 (0<x<0.065) and Ca1-yLay(Fe0.973Ru0.027)2As2 (0<y<0.2) have been synthesized and studied with respect to their structural, electronic and magnetic properties. The partial substitution of Fe by Ru induces a decrease of the c-axis constant leading for x<0.023 to a suppression of the coupled magnetic and structural (tetragonal to orthorhombic) transitions. At x_cr=0.023 a first order transition to a collapsed tetragonal (CT) phase is found, which behaves like a Fermi liquid and which is stabilized by further increase of x. The absence of superconductivity near x_cr is consistent with truly hydrostatic pressure experiments on undoped CaFe2As2. Starting in the CT regime at x=0.027 we investigate the additional effect of electron doping by partial replacement of Ca by La. Most remarkably, with increasing y the CT phase transition is destabilized and the system is tuned back into a tetragonal ground state at y>0.08. This effect is ascribed to a weakening of interlayer As-As bonds by electron doping. Upon further electron doping filamentary superconductivity with Tc of 41 K at y=0.2 is observed.
We revealed that the superconducting transition temperature Tc of the multi-component superconductor Sr2RuO4 is enhanced to 3.3 K under in-plane uniaxial pressure that reduces the tetragonal crystal symmetry. This result suggests that new superconduc ting phases with a one-component order parameter are induced. We have also clarified the inplane pressure direction dependence of the emergence of this higher-Tc superconducting phase: pressure along the [100] direction is more favorable than pressure along the [110] direction. This result is probably closely related to the direct shortening of the in-plane Ru-O bond length along the pressure direction and the approach of the gamma Fermi surface to the van Hove singularity under the pressure parallel to the [100] direction.
A $^{59}$Co nuclear quadrupole resonance (NQR) was performed on a single-crystalline ferromagnetic (FM) superconductor UCoGe under pressure. The FM phase vanished at a critical pressure $P_c$, and the NQR spectrum just below $P_c$ showed phase separa tion of the FM and paramagnetic (PM) phases below Curie temperature $T_{textrm{Curie}}$, suggesting first-order FM quantum phase transition (QPT). We found that the internal field was absent above $P_c$, but the superconductivity is almost unchanged. This result suggests the existence of the nonunitary to unitary transition of the superconductivity around $P_c$. Nuclear spin-lattice relaxation rate $1/T_1$ showed the FM critical fluctuations around $P_c$, which persist above $P_c$ and are clearly related to superconductivity in the PM phase. This FM QPT is understood to be a weak first order with critical fluctuations. $1/T_1$ sharply decreased in the superconducting (SC) state above $P_c$ with a single component, in contrast to the two-component $1/T_1$ in the FM SC state, indicating that the inhomogeneous SC state is a characteristic feature of the FM SC state in UCoGe.
Magnetoresistivity measurements with fine tuning of the field direction on high quality single crystals of the ferromagnetic superconductor UCoGe show anomalous anisotropy of the upper critical field H_c2. H_c2 for H // b-axis (H_c2^b) in the orthorh ombic crystal structure is strongly enhanced with decreasing temperature with an S-shape and reaches nearly 20 T at 0 K. The temperature dependence of H_c2^a shows upward curvature with a low temperature value exceeding 30 T, while H_c2^c at 0 K is very small (~ 0.6 T). Contrary to conventional ferromagnets, the decrease of the Curie temperature with increasing field for H // b-axis marked by an enhancement of the effective mass of the conduction electrons appears to be the origin of the S-shaped H_c2^b curve. These results indicate that the field-induced ferromagnetic instability or magnetic quantum criticality reinforces superconductivity.
In the framework of a two-band model, we study the phase separation regime of different kinds of strongly correlated charge carriers as a function of the energy splitting between the two sets of bands. The narrow (wide) band simulates the more locali zed (more delocalized) type of charge carriers. By assuming that the internal chemical pressure on the CuO$_2$ layer due to interlayer mismatch controls the energy splitting between the two sets of states, the theoretical predictions are able to reproduce the regime of phase separation at doping higher than 1/8 in the experimental pressure-doping-$T_c$ phase diagram of cuprates at large microstrain as it appears in overoxygenated La$_2$CuO$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا