ترغب بنشر مسار تعليمي؟ اضغط هنا

DR-Tools: a suite of lightweight open-source tools to measure and visualize Java source code

88   0   0.0 ( 0 )
 نشر من قبل Guilherme Lacerda
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Guilherme Lacerda




اسأل ChatGPT حول البحث

In Software Engineering, some of the most critical activities are maintenance and evolution. However, to perform both with quality, minimizing impacts and risks, developers need to analyze and identify where the main problems come from previously. In this paper, we introduce DR-Tools Suite, a set of lightweight open-source tools that analyze and calculate source code metrics, allowing developers to visualize the results in different formats and graphs. Also, we define a set of heuristics to help the code analysis. We conducted two case studies (one academic and one industrial) to collect feedback on the tools suite, on how we will evolve the tools, as well as insights to develop new tools that support developers in their daily work.

قيم البحث

اقرأ أيضاً

236 - Chao Liu , Xin Xia , David Lo 2020
Code search is a core software engineering task. Effective code search tools can help developers substantially improve their software development efficiency and effectiveness. In recent years, many code search studies have leveraged different techniq ues, such as deep learning and information retrieval approaches, to retrieve expected code from a large-scale codebase. However, there is a lack of a comprehensive comparative summary of existing code search approaches. To understand the research trends in existing code search studies, we systematically reviewed 81 relevant studies. We investigated the publication trends of code search studies, analyzed key components, such as codebase, query, and modeling technique used to build code search tools, and classified existing tools into focusing on supporting seven different search tasks. Based on our findings, we identified a set of outstanding challenges in existing studies and a research roadmap for future code search research.
Software testing is one of the very important Quality Assurance (QA) components. A lot of researchers deal with the testing process in terms of tester motivation and how tests should or should not be written. However, it is not known from the recomme ndations how the tests are written in real projects. In this paper, the following was investigated: (i) the denotation of the word test in different natural languages; (ii) whether the number of occurrences of the word test correlates with the number of test cases; and (iii) what testing frameworks are mostly used. The analysis was performed on 38 GitHub open source repositories thoroughly selected from the set of 4.3M GitHub projects. We analyzed 20,340 test cases in 803 classes manually and 170k classes using an automated approach. The results show that: (i) there exists a weak correlation (r = 0.655) between the number of occurrences of the word test and the number of test cases in a class; (ii) the proposed algorithm using static file analysis correctly detected 97% of test cases; (iii) 15% of the analyzed classes used main() function whose represent regular Java programs that test the production code without using any third-party framework. The identification of such tests is very complex due to implementation diversity. The results may be leveraged to more quickly identify and locate test cases in a repository, to understand practices in customized testing solutions, and to mine tests to improve program comprehension in the future.
We explore the applicability of Graph Neural Networks in learning the nuances of source code from a security perspective. Specifically, whether signatures of vulnerabilities in source code can be learned from its graph representation, in terms of rel ationships between nodes and edges. We create a pipeline we call AI4VA, which first encodes a sample source code into a Code Property Graph. The extracted graph is then vectorized in a manner which preserves its semantic information. A Gated Graph Neural Network is then trained using several such graphs to automatically extract templates differentiating the graph of a vulnerable sample from a healthy one. Our model outperforms static analyzers, classic machine learning, as well as CNN and RNN-based deep learning models on two of the three datasets we experiment with. We thus show that a code-as-graph encoding is more meaningful for vulnerability detection than existing code-as-photo and linear sequence encoding approaches. (Submitted Oct 2019, Paper #28, ICST)
270 - Yao Wan , Yang He , Jian-Guo Zhang 2020
We present NaturalCC, an efficient and extensible toolkit to bridge the gap between natural language and programming language, and facilitate the research on big code analysis. Using NaturalCC, researchers both from natural language or programming la nguage communities can quickly and easily reproduce the state-of-the-art baselines and implement their approach. NaturalCC is built upon Fairseq and PyTorch, providing (1) an efficient computation with multi-GPU and mixed-precision data processing for fast model training, (2) a modular and extensible framework that makes it easy to reproduce or implement an approach for big code analysis, and (3) a command line interface and a graphical user interface to demonstrate each models performance. Currently, we have included several state-of-the-art baselines across different tasks (e.g., code completion, code comment generation, and code retrieval) for demonstration. The video of this demo is available at https://www.youtube.com/watch?v=q4W5VSI-u3E&t=25s.
74 - Andreas Schreiber 2020
We want to analyze visually, to what extend team members and external developers contribute to open-source projects. This gives a high-level impression about collaboration in that projects. We achieve this by recording provenance of the development p rocess and use graph drawing on the resulting provenance graph. Our graph drawings show, which developers are jointly changed the same files -- and to what extent -- which we show at Germanys COVID-19 exposure notification app Corona-Warn-App.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا