ﻻ يوجد ملخص باللغة العربية
For a non-empty compact set $E$ in a proper subdomain $Omega$ of the complex plane, we denote the diameter of $E$ and the distance from $E$ to the boundary of $Omega$ by $d(E)$ and $d(E,partialOmega),$ respectively. The quantity $d(E)/d(E,partialOmega)$ is invariant under similarities and plays an important role in Geometric Function Theory. In the present paper, when $Omega$ has the hyperbolic distance $h_Omega(z,w),$ we consider the infimum $kappa(Omega)$ of the quantity $h_Omega(E)/log(1+d(E)/d(E,partialOmega))$ over compact subsets $E$ of $Omega$ with at least two points, where $h_Omega(E)$ stands for the hyperbolic diameter of the set $E.$ We denote the upper half-plane by $mathbb{H}$. Our main results claim that $kappa(Omega)$ is positive if and only if the boundary of $Omega$ is uniformly perfect and that the inequality $kappa(Omega)leqkappa(mathbb{H})$ holds for all $Omega,$ where equality holds precisely when $Omega$ is convex.
In this paper we consider Hankel operators on domains with bounded intrinsic geometry. For these domains we characterize the $L^2$-symbols where the associated Hankel operator is compact (respectively bounded) on the space of square integrable holomorphic functions.
We describe recent work on the Bergman kernel of the (non-smooth) worm domain in several complex variables. An asymptotic expansion is obtained for the Bergman kernel. Mapping properties of the Bergman projection are studied. Irregularity properties
In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense
The subject of this paper is Beurlings celebrated extension of the Riemann mapping theorem cite{Beu53}. Our point of departure is the observation that the only known proof of the Beurling-Riemann mapping theorem contains a number of gaps which seem i
We study two geometric properties of reproducing kernels in model spaces $K_theta$where $theta$ is an inner function in the disc: overcompleteness and existence of uniformly minimalsystems of reproducing kernels which do not contain Riesz basic seque