ﻻ يوجد ملخص باللغة العربية
We present a new approach to solve the exponential retrieval problem. We derive a stable technique, based on the singular value decomposition (SVD) of lag-covariance and crosscovariance matrices consisting of covariance coefficients computed for index translated copies of an initial time series. For these matrices a generalized eigenvalue problem is solved. The initial signal is mapped into the basis of the generalized eigenvectors and phase portraits are consequently analyzed. Pattern recognition techniques could be applied to distinguish phase portraits related to the exponentials and noise. Each frequency is evaluated by unwrapping phases of the corresponding portrait, detecting potential wrapping events and estimation of the phase slope. Efficiency of the proposed and existing methods is compared on the set of examples, including the white Gaussian and auto-regressive model noise.
Singular Spectrum Analysis (SSA) or Singular Value Decomposition (SVD) are often used to de-noise univariate time series or to study their spectral profile. Both techniques rely on the eigendecomposition of the cor- relation matrix estimated after em
A fast physics analysis framework has been developed based on SNiPER to process the increasingly large data sample collected by BESIII. In this framework, a reconstructed event data model with SmartRef is designed to improve the speed of Input/Output
This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data. We describe SVD methods for visualization of gene expression data, representation of the data using a smaller num
Recently, two novel techniques for the extraction of the phase-shift map (Tomassini {it et.~al.}, Applied Optics {bf 40} 35 (2001)) and the electronic density map estimation (Tomassini P. and Giulietti A., Optics Communication {bf 199}, pp 143-148 (2
To handle time series with complicated oscillatory structure, we propose a novel time-frequency (TF) analysis tool that fuses the short time Fourier transform (STFT) and periodic transform (PT). Since many time series oscillate with time-varying freq