ﻻ يوجد ملخص باللغة العربية
Recently, a 4th-order asymptotic preserving multiderivative implicit-explicit (IMEX) scheme was developed (Schutz and Seal 2020, arXiv:2001.08268). This scheme is based on a 4th-order Hermite interpolation in time, and uses an approach based on operator splitting that converges to the underlying quadrature if iterated sufficiently. Hermite schemes have been used in astrophysics for decades, particularly for N-body calculations, but not in a form suitable for solving stiff equations. In this work, we extend the scheme presented in Schutz and Seal 2020 to higher orders. Such high-order schemes offer advantages when one aims to find high-precision solutions to systems of differential equations containing stiff terms, which occur throughout the physical sciences. We begin by deriving Hermite schemes of arbitrary order and discussing the stability of these formulas. Afterwards, we demonstrate how the method of Schutz and Seal 2020 generalises in a straightforward manner to any of these schemes, and prove convergence properties of the resulting IMEX schemes. We then present results for methods ranging from 6th to 12th order and explore a selection of test problems, including both linear and nonlinear ordinary differential equations and Burgers equation. To our knowledge this is also the first time that Hermite time-stepping methods have been applied to partial differential equations. We then discuss some benefits of these schemes, such as their potential for parallelism and low memory usage, as well as limitations and potential drawbacks.
We develop new numerical schemes for Vlasov--Poisson equations with high-order accuracy. Our methods are based on a spatially monotonicity-preserving (MP) scheme and are modified suitably so that positivity of the distribution function is also preser
In most of mesh-free methods, the calculation of interactions between sample points or particles is the most time consuming. When we use mesh-free methods with high spatial orders, the order of the time integration should also be high. If we use usua
Building on the framework of Zhang & Shu cite{zhangShu_2010a,zhangShu_2010b}, we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angul
Mesh-free methods have significant potential for simulations in complex geometries, as the time consuming process of mesh-generation is avoided. Smoothed Particle Hydrodynamics (SPH) is the most widely used mesh-free method, but suffers from a lack o
We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them