ﻻ يوجد ملخص باللغة العربية
We have carried out a detailed study of single pulse emission from the pulsar B2000+40 (J2002+4050), observed at 1.6 GHz frequencies using the Effelsberg radio telescope. The pulsar has three components which are not well separated, with the central component resembling core emission. We have investigated modulations in single pulse behaviour using the fluctuation spectral analysis which showed presence of two prominent periodicities, around 2.5$P$ and 40$P$, respectively. The shorter periodicity was associated with the phenomenon of subpulse drifting and was seen to be absent in central core component. Drifting showed large phase variations in conal components. Additionally, the periodic modulations had significant evolution with time, varying between very sharp and highly diffuse features. In addition to drifting the pulsar also had presence of nulling in the single pulse sequence. The longer periodic feature in the fluctuation spectra was associated with nulling behaviour. The pulsar joins a select group which shows the presence of phase modulated drifting as well as periodic nulling in the presence of core emission. This provides further evidence for the two phenomena to be distinct from each other with different physical origin.
We report a detailed observational study of the single pulses from the pulsar J1822$-$2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two
We report a detailed analysis of the emission behaviour of the five component, core-double cone, pulsar J2006$-$0807 (B2003$-$08). The single pulses revealed the presence of the three major phenomena of subpulse drifting, nulling and mode changing. T
In this study, we report on a detailed single pulse polarimetric analysis of the radio emission from the pulsar J2321+6024 (B2319+60) observed with the Giant Metrewave Radio Telescope, over wide frequencies ranging between 300 to 500 MHz and widely s
In this study we propose a classification scheme for the phenomenon of subpulse drifting in pulsars. We have assembled an exhaustive list of pulsars which exhibit subpulse drifting from previously published results as well as recent observations usin
We develop a model for subpulse separation period, $P_2$, taking into account both the apparent motion of the visible point as a function of pulsar phase, $psi$, and the possibility of abrupt jumps between different rotation states in non-corotating