ﻻ يوجد ملخص باللغة العربية
The $mathbf{O}(D,D)$ covariant generalized metric, postulated as a truly fundamental variable, can describe novel geometries where the notion of Riemannian metric ceases to exist. Here we quantize a closed string upon such backgrounds and identify flat, anomaly-free, non-Riemannian string vacua in the familiar critical dimension, $D{=26}$ (or $D{=10}$). Remarkably, the whole BRST closed string spectrum is restricted to just one level with no tachyon, and matches the linearized equations of motion of Double Field Theory. Taken as an internal space, our non-Riemannian vacua may open up novel avenues alternative to traditional string compactification.
We suggest a means of obtaining certain Greens functions in 3+1-dimensional ${cal N} = 4$ supersymmetric Yang-Mills theory with a large number of colors via non-critical string theory. The non-critical string theory is related to critical string theo
We construct the most general non-extremal spherically symmetric instanton solution of a gravity-dilaton-axion system with $SL(2,R)$ symmetry, for arbitrary euclidean spacetime dimension $Dgeq 3$. A subclass of these solutions describe completely reg
We review a systematic construction of the 2-stack of bundle gerbes via descent, and extend it to non-abelian gerbes. We review the role of non-abelian gerbes in orientifold sigma models, for the anomaly cancellation in supersymmetric sigma models, a
We study the non-perturbative superpotential in E_8 x E_8 heterotic string theory on a non-simply connected Calabi-Yau manifold X, as well as on its simply connected covering space tilde{X}. The superpotential is induced by the string wrapping holomo
Taking $mathbf{O}(D,D)$ covariant field variables as its truly fundamental constituents, Double Field Theory can accommodate not only conventional supergravity but also non-Riemannian gravities that may be classified by two non-negative integers, $(n