ﻻ يوجد ملخص باللغة العربية
We propose a new approach to Human Activity Evaluation (HAE) in long videos using graph-based multi-task modeling. Previous works in activity evaluation either directly compute a metric using a detected skeleton or use the scene information to regress the activity score. These approaches are insufficient for accurate activity assessment since they only compute an average score over a clip, and do not consider the correlation between the joints and body dynamics. Moreover, they are highly scene-dependent which makes the generalizability of these methods questionable. We propose a novel multi-task framework for HAE that utilizes a Graph Convolutional Network backbone to embed the interconnections between human joints in the features. In this framework, we solve the Human Activity Segmentation (HAS) problem as an auxiliary task to improve activity assessment. The HAS head is powered by an Encoder-Decoder Temporal Convolutional Network to semantically segment long videos into distinct activity classes, whereas, HAE uses a Long-Short-Term-Memory-based architecture. We evaluate our method on the UW-IOM and TUM Kitchen datasets and discuss the success and failure cases in these two datasets.
Key role in the prevention of diet-related chronic diseases plays the balanced nutrition together with a proper diet. The conventional dietary assessment methods are time-consuming, expensive and prone to errors. New technology-based methods that pro
Federated learning (FL) for medical image segmentation becomes more challenging in multi-task settings where clients might have different categories of labels represented in their data. For example, one client might have patient data with healthy pan
Early detection and segmentation of skin lesions is crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, manual delineation is time consuming and subject to intra- and inter-observer variations amon
The quality control of fetal sonographic (FS) images is essential for the correct biometric measurements and fetal anomaly diagnosis. However, quality control requires professional sonographers to perform and is often labor-intensive. To solve this p
We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in